Superconducting parity effect across the Anderson limit
Sergio Vlaic,
Stéphane Pons,
Tianzhen Zhang,
Alexandre Assouline,
Alexandre Zimmers,
Christophe David,
Guillemin Rodary,
Jean-Christophe Girard,
Dimitri Roditchev and
Hervé Aubin ()
Additional contact information
Sergio Vlaic: LPEM, ESPCI Paris, PSL Research University, CNRS, Sorbonne Universités
Stéphane Pons: LPEM, ESPCI Paris, PSL Research University, CNRS, Sorbonne Universités
Tianzhen Zhang: LPEM, ESPCI Paris, PSL Research University, CNRS, Sorbonne Universités
Alexandre Assouline: LPEM, ESPCI Paris, PSL Research University, CNRS, Sorbonne Universités
Alexandre Zimmers: LPEM, ESPCI Paris, PSL Research University, CNRS, Sorbonne Universités
Christophe David: Centre de Nanosciences et de Nanotechnologies, CNRS, Univ. Paris-Sud, Universités Paris-Saclay
Guillemin Rodary: Centre de Nanosciences et de Nanotechnologies, CNRS, Univ. Paris-Sud, Universités Paris-Saclay
Jean-Christophe Girard: Centre de Nanosciences et de Nanotechnologies, CNRS, Univ. Paris-Sud, Universités Paris-Saclay
Dimitri Roditchev: LPEM, ESPCI Paris, PSL Research University, CNRS, Sorbonne Universités
Hervé Aubin: LPEM, ESPCI Paris, PSL Research University, CNRS, Sorbonne Universités
Nature Communications, 2017, vol. 8, issue 1, 1-8
Abstract:
Abstract How small can superconductors be? For isolated nanoparticles subject to quantum size effects, P.W. Anderson in 1959 conjectured that superconductivity could only exist when the electronic level spacing δ is smaller than the superconducting gap energy Δ. Here we report a scanning tunnelling spectroscopy study of superconducting lead (Pb) nanocrystals grown on the (110) surface of InAs. We find that for nanocrystals of lateral size smaller than the Fermi wavelength of the 2D electron gas at the surface of InAs, the electronic transmission of the interface is weak; this leads to Coulomb blockade and enables the extraction of electron addition energy of the nanocrystals. For large nanocrystals, the addition energy displays superconducting parity effect, a direct consequence of Cooper pairing. Studying this parity effect as a function of nanocrystal volume, we find the suppression of Cooper pairing when the mean electronic level spacing overcomes the superconducting gap energy, thus demonstrating unambiguously the validity of the Anderson criterion.
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/ncomms14549 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms14549
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms14549
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().