EconPapers    
Economics at your fingertips  
 

Dehydration-driven stress transfer triggers intermediate-depth earthquakes

Thomas P. Ferrand (), Nadège Hilairet, Sarah Incel, Damien Deldicque, Loïc Labrousse, Julien Gasc, Joerg Renner, Yanbin Wang, Harry W. Green and Alexandre Schubnel
Additional contact information
Thomas P. Ferrand: Laboratoire de Géologie, CNRS UMR 8538, Ecole Normale Supérieure, PSL Research University
Nadège Hilairet: Unité Matériaux et Transformations - UMR 8207, CNRS, Univ. Lille, ENSCL
Sarah Incel: Laboratoire de Géologie, CNRS UMR 8538, Ecole Normale Supérieure, PSL Research University
Damien Deldicque: Laboratoire de Géologie, CNRS UMR 8538, Ecole Normale Supérieure, PSL Research University
Loïc Labrousse: Institut des Sciences de la Terre de Paris, Université Pierre et Marie Curie
Julien Gasc: Laboratoire de Géologie, CNRS UMR 8538, Ecole Normale Supérieure, PSL Research University
Joerg Renner: Institut für Geologie, Mineralogie und Geophysik, Ruhr Universität Bochum
Yanbin Wang: Center for Advanced Radiation Sources, University of Chicago
Harry W. Green: University of California
Alexandre Schubnel: Laboratoire de Géologie, CNRS UMR 8538, Ecole Normale Supérieure, PSL Research University

Nature Communications, 2017, vol. 8, issue 1, 1-11

Abstract: Abstract Intermediate-depth earthquakes (30–300 km) have been extensively documented within subducting oceanic slabs, but their mechanics remains enigmatic. Here we decipher the mechanism of these earthquakes by performing deformation experiments on dehydrating serpentinized peridotites (synthetic antigorite-olivine aggregates, minerals representative of subduction zones lithologies) at upper mantle conditions. At a pressure of 1.1 gigapascals, dehydration of deforming samples containing only 5 vol% of antigorite suffices to trigger acoustic emissions, a laboratory-scale analogue of earthquakes. At 3.5 gigapascals, acoustic emissions are recorded from samples with up to 50 vol% of antigorite. Experimentally produced faults, observed post-mortem, are sealed by fluid-bearing micro-pseudotachylytes. Microstructural observations demonstrate that antigorite dehydration triggered dynamic shear failure of the olivine load-bearing network. These laboratory analogues of intermediate-depth earthquakes demonstrate that little dehydration is required to trigger embrittlement. We propose an alternative model to dehydration-embrittlement in which dehydration-driven stress transfer, rather than fluid overpressure, causes embrittlement.

Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.nature.com/articles/ncomms15247 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms15247

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/ncomms15247

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms15247