EconPapers    
Economics at your fingertips  
 

Ultrathin metal-organic framework array for efficient electrocatalytic water splitting

Jingjing Duan, Sheng Chen () and Chuan Zhao ()
Additional contact information
Jingjing Duan: School of Chemistry, Faculty of Science, The University of New South Wales
Sheng Chen: School of Chemistry, Faculty of Science, The University of New South Wales
Chuan Zhao: School of Chemistry, Faculty of Science, The University of New South Wales

Nature Communications, 2017, vol. 8, issue 1, 1-7

Abstract: Abstract Two-dimensional metal-organic frameworks represent a family of materials with attractive chemical and structural properties, which are usually prepared in the form of bulk powders. Here we show a generic approach to fabricate ultrathin nanosheet array of metal-organic frameworks on different substrates through a dissolution–crystallization mechanism. These materials exhibit intriguing properties for electrocatalysis including highly exposed active molecular metal sites owning to ultra-small thickness of nanosheets, improved electrical conductivity and a combination of hierarchical porosity. We fabricate a nickel-iron-based metal-organic framework array, which demonstrates superior electrocatalytic performance towards oxygen evolution reaction with a small overpotential of 240 mV at 10 mA cm−2, and robust operation for 20,000 s with no detectable activity decay. Remarkably, the turnover frequency of the electrode is 3.8 s−1 at an overpotential of 400 mV. We further demonstrate the promise of these electrodes for other important catalytic reactions including hydrogen evolution reaction and overall water splitting.

Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.nature.com/articles/ncomms15341 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms15341

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/ncomms15341

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms15341