EconPapers    
Economics at your fingertips  
 

Coherent structural trapping through wave packet dispersion during photoinduced spin state switching

Henrik T. Lemke (), Kasper S. Kjær, Robert Hartsock, Tim B. van Driel, Matthieu Chollet, James M. Glownia, Sanghoon Song, Diling Zhu, Elisabetta Pace, Samir F. Matar, Martin M. Nielsen, Maurizio Benfatto, Kelly J. Gaffney, Eric Collet and Marco Cammarata ()
Additional contact information
Henrik T. Lemke: Linac Coherent Light Source, SLAC National Accelerator Laboratory
Kasper S. Kjær: PULSE Institute, SLAC National Accelerator Laboratory, Stanford University
Robert Hartsock: Linac Coherent Light Source, SLAC National Accelerator Laboratory
Tim B. van Driel: Linac Coherent Light Source, SLAC National Accelerator Laboratory
Matthieu Chollet: Linac Coherent Light Source, SLAC National Accelerator Laboratory
James M. Glownia: Linac Coherent Light Source, SLAC National Accelerator Laboratory
Sanghoon Song: Linac Coherent Light Source, SLAC National Accelerator Laboratory
Diling Zhu: Linac Coherent Light Source, SLAC National Accelerator Laboratory
Elisabetta Pace: Laboratori Nazionali di Frascati-INFN
Samir F. Matar: ICMCB, CNRS UPR 9048, Univ. Bordeaux
Martin M. Nielsen: Molecular Movies, Technical University of Denmark
Maurizio Benfatto: Laboratori Nazionali di Frascati-INFN
Kelly J. Gaffney: SSRL and PULSE Institute, SLAC National Accelerator Laboratory
Eric Collet: Univ. Rennes 1, CNRS, UBL, Institut de Physique de Rennes (IPR) - UMR 6251
Marco Cammarata: Univ. Rennes 1, CNRS, UBL, Institut de Physique de Rennes (IPR) - UMR 6251

Nature Communications, 2017, vol. 8, issue 1, 1-8

Abstract: Abstract The description of ultrafast nonadiabatic chemical dynamics during molecular photo-transformations remains challenging because electronic and nuclear configurations impact each other and cannot be treated independently. Here we gain experimental insights, beyond the Born–Oppenheimer approximation, into the light-induced spin-state trapping dynamics of the prototypical [Fe(bpy)3]2+ compound by time-resolved X-ray absorption spectroscopy at sub-30-femtosecond resolution and high signal-to-noise ratio. The electronic decay from the initial optically excited electronic state towards the high spin state is distinguished from the structural trapping dynamics, which launches a coherent oscillating wave packet (265 fs period), clearly identified as molecular breathing. Throughout the structural trapping, the dispersion of the wave packet along the reaction coordinate reveals details of intramolecular vibronic coupling before a slower vibrational energy dissipation to the solution environment. These findings illustrate how modern time-resolved X-ray absorption spectroscopy can provide key information to unravel dynamic details of photo-functional molecules.

Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.nature.com/articles/ncomms15342 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms15342

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/ncomms15342

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms15342