Covalently linked dengue virus envelope glycoprotein dimers reduce exposure of the immunodominant fusion loop epitope
Alexander Rouvinski,
Wanwisa Dejnirattisai,
Pablo Guardado-Calvo,
Marie-Christine Vaney,
Arvind Sharma,
Stéphane Duquerroy,
Piyada Supasa,
Wiyada Wongwiwat,
Ahmed Haouz,
Giovanna Barba-Spaeth,
Juthathip Mongkolsapaya (),
Félix A. Rey () and
Gavin R. Screaton ()
Additional contact information
Alexander Rouvinski: Institut Pasteur, Unité de Virologie Structurale
Wanwisa Dejnirattisai: Hammersmith Hospital Campus, Imperial College London
Pablo Guardado-Calvo: Institut Pasteur, Unité de Virologie Structurale
Marie-Christine Vaney: Institut Pasteur, Unité de Virologie Structurale
Arvind Sharma: Institut Pasteur, Unité de Virologie Structurale
Stéphane Duquerroy: Institut Pasteur, Unité de Virologie Structurale
Piyada Supasa: Hammersmith Hospital Campus, Imperial College London
Wiyada Wongwiwat: Hammersmith Hospital Campus, Imperial College London
Ahmed Haouz: Institut Pasteur, Protéopôle, CNRS UMR 3528
Giovanna Barba-Spaeth: Institut Pasteur, Unité de Virologie Structurale
Juthathip Mongkolsapaya: Hammersmith Hospital Campus, Imperial College London
Félix A. Rey: Institut Pasteur, Unité de Virologie Structurale
Gavin R. Screaton: Hammersmith Hospital Campus, Imperial College London
Nature Communications, 2017, vol. 8, issue 1, 1-12
Abstract:
Abstract A problem in the search for an efficient vaccine against dengue virus is the immunodominance of the fusion loop epitope (FLE), a segment of the envelope protein E that is buried at the interface of the E dimers coating mature viral particles. Anti-FLE antibodies are broadly cross-reactive but poorly neutralizing, displaying a strong infection enhancing potential. FLE exposure takes place via dynamic ‘breathing’ of E dimers at the virion surface. In contrast, antibodies targeting the E dimer epitope (EDE), readily exposed at the E dimer interface over the region of the conserved fusion loop, are very potent and broadly neutralizing. We here engineer E dimers locked by inter-subunit disulfide bonds, and show by X-ray crystallography and by binding to a panel of human antibodies that these engineered dimers do not expose the FLE, while retaining the EDE exposure. These locked dimers are strong immunogen candidates for a next-generation vaccine.
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/ncomms15411 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms15411
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms15411
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().