EconPapers    
Economics at your fingertips  
 

Organic narrowband near-infrared photodetectors based on intermolecular charge-transfer absorption

Bernhard Siegmund (), Andreas Mischok, Johannes Benduhn, Olaf Zeika, Sascha Ullbrich, Frederik Nehm, Matthias Böhm, Donato Spoltore, Hartmut Fröb, Christian Körner, Karl Leo and Koen Vandewal ()
Additional contact information
Bernhard Siegmund: Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden
Andreas Mischok: Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden
Johannes Benduhn: Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden
Olaf Zeika: Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden
Sascha Ullbrich: Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden
Frederik Nehm: Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden
Matthias Böhm: Institute for Applied Physics, Technische Universität Dresden
Donato Spoltore: Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden
Hartmut Fröb: Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden
Christian Körner: Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden
Karl Leo: Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden
Koen Vandewal: Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden

Nature Communications, 2017, vol. 8, issue 1, 1-6

Abstract: Abstract Blending organic electron donors and acceptors yields intermolecular charge-transfer states with additional optical transitions below their optical gaps. In organic photovoltaic devices, such states play a crucial role and limit the operating voltage. Due to its extremely weak nature, direct intermolecular charge-transfer absorption often remains undetected and unused for photocurrent generation. Here, we use an optical microcavity to increase the typically negligible external quantum efficiency in the spectral region of charge-transfer absorption by more than 40 times, yielding values over 20%. We demonstrate narrowband detection with spectral widths down to 36 nm and resonance wavelengths between 810 and 1,550 nm, far below the optical gap of both donor and acceptor. The broad spectral tunability via a simple variation of the cavity thickness makes this innovative, flexible and potentially visibly transparent device principle highly suitable for integrated low-cost spectroscopic near-infrared photodetection.

Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
https://www.nature.com/articles/ncomms15421 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms15421

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/ncomms15421

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms15421