EconPapers    
Economics at your fingertips  
 

Central and peripheral clocks are coupled by a neuropeptide pathway in Drosophila

Mareike Selcho, Carola Millán, Angelina Palacios-Muñoz, Franziska Ruf, Lilian Ubillo, Jiangtian Chen, Gregor Bergmann, Chihiro Ito, Valeria Silva, Christian Wegener () and John Ewer ()
Additional contact information
Mareike Selcho: Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg
Carola Millán: Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaiso
Angelina Palacios-Muñoz: Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaiso
Franziska Ruf: Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg
Lilian Ubillo: Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaiso
Jiangtian Chen: Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg
Gregor Bergmann: Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg
Chihiro Ito: Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg
Valeria Silva: Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaiso
Christian Wegener: Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg
John Ewer: Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaiso

Nature Communications, 2017, vol. 8, issue 1, 1-13

Abstract: Abstract Animal circadian clocks consist of central and peripheral pacemakers, which are coordinated to produce daily rhythms in physiology and behaviour. Despite its importance for optimal performance and health, the mechanism of clock coordination is poorly understood. Here we dissect the pathway through which the circadian clock of Drosophila imposes daily rhythmicity to the pattern of adult emergence. Rhythmicity depends on the coupling between the brain clock and a peripheral clock in the prothoracic gland (PG), which produces the steroid hormone, ecdysone. Time information from the central clock is transmitted via the neuropeptide, sNPF, to non-clock neurons that produce the neuropeptide, PTTH. These secretory neurons then forward time information to the PG clock. We also show that the central clock exerts a dominant role on the peripheral clock. This use of two coupled clocks could serve as a paradigm to understand how daily steroid hormone rhythms are generated in animals.

Date: 2017
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/ncomms15563 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms15563

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/ncomms15563

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms15563