EconPapers    
Economics at your fingertips  
 

Electrical resistance of individual defects at a topological insulator surface

Felix Lüpke, Markus Eschbach, Tristan Heider, Martin Lanius, Peter Schüffelgen, Daniel Rosenbach, Nils von den Driesch, Vasily Cherepanov, Gregor Mussler, Lukasz Plucinski, Detlev Grützmacher, Claus M. Schneider and Bert Voigtländer ()
Additional contact information
Felix Lüpke: Peter Grünberg Institut (PGI-3), Forschungszentrum Jülich
Markus Eschbach: JARA-FIT, Forschungszentrum Jülich
Tristan Heider: JARA-FIT, Forschungszentrum Jülich
Martin Lanius: JARA-FIT, Forschungszentrum Jülich
Peter Schüffelgen: JARA-FIT, Forschungszentrum Jülich
Daniel Rosenbach: JARA-FIT, Forschungszentrum Jülich
Nils von den Driesch: JARA-FIT, Forschungszentrum Jülich
Vasily Cherepanov: Peter Grünberg Institut (PGI-3), Forschungszentrum Jülich
Gregor Mussler: JARA-FIT, Forschungszentrum Jülich
Lukasz Plucinski: JARA-FIT, Forschungszentrum Jülich
Detlev Grützmacher: JARA-FIT, Forschungszentrum Jülich
Claus M. Schneider: JARA-FIT, Forschungszentrum Jülich
Bert Voigtländer: Peter Grünberg Institut (PGI-3), Forschungszentrum Jülich

Nature Communications, 2017, vol. 8, issue 1, 1-7

Abstract: Abstract Three-dimensional topological insulators host surface states with linear dispersion, which manifest as a Dirac cone. Nanoscale transport measurements provide direct access to the transport properties of the Dirac cone in real space and allow the detailed investigation of charge carrier scattering. Here we use scanning tunnelling potentiometry to analyse the resistance of different kinds of defects at the surface of a (Bi0.53Sb0.47)2Te3 topological insulator thin film. We find the largest localized voltage drop to be located at domain boundaries in the topological insulator film, with a resistivity about four times higher than that of a step edge. Furthermore, we resolve resistivity dipoles located around nanoscale voids in the sample surface. The influence of such defects on the resistance of the topological surface state is analysed by means of a resistor network model. The effect resulting from the voids is found to be small compared with the other defects.

Date: 2017
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/ncomms15704 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms15704

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/ncomms15704

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms15704