Turbulence hierarchy in a random fibre laser
Iván R. Roa González,
Bismarck C. Lima,
Pablo I. R. Pincheira,
Arthur A. Brum,
Antônio M. S. Macêdo,
Giovani L. Vasconcelos,
Leonardo de S. Menezes,
Ernesto P. Raposo (),
Anderson S. L. Gomes and
Raman Kashyap
Additional contact information
Iván R. Roa González: Laboratório de Física Teórica e Computacional, Universidade Federal de Pernambuco
Bismarck C. Lima: Universidade Federal de Pernambuco
Pablo I. R. Pincheira: Universidade Federal de Pernambuco
Arthur A. Brum: Laboratório de Física Teórica e Computacional, Universidade Federal de Pernambuco
Antônio M. S. Macêdo: Laboratório de Física Teórica e Computacional, Universidade Federal de Pernambuco
Giovani L. Vasconcelos: Laboratório de Física Teórica e Computacional, Universidade Federal de Pernambuco
Leonardo de S. Menezes: Universidade Federal de Pernambuco
Ernesto P. Raposo: Laboratório de Física Teórica e Computacional, Universidade Federal de Pernambuco
Anderson S. L. Gomes: Universidade Federal de Pernambuco
Raman Kashyap: Fabulas Laboratory, Polytechnique Montreal
Nature Communications, 2017, vol. 8, issue 1, 1-8
Abstract:
Abstract Turbulence is a challenging feature common to a wide range of complex phenomena. Random fibre lasers are a special class of lasers in which the feedback arises from multiple scattering in a one-dimensional disordered cavity-less medium. Here we report on statistical signatures of turbulence in the distribution of intensity fluctuations in a continuous-wave-pumped erbium-based random fibre laser, with random Bragg grating scatterers. The distribution of intensity fluctuations in an extensive data set exhibits three qualitatively distinct behaviours: a Gaussian regime below threshold, a mixture of two distributions with exponentially decaying tails near the threshold and a mixture of distributions with stretched-exponential tails above threshold. All distributions are well described by a hierarchical stochastic model that incorporates Kolmogorov’s theory of turbulence, which includes energy cascade and the intermittence phenomenon. Our findings have implications for explaining the remarkably challenging turbulent behaviour in photonics, using a random fibre laser as the experimental platform.
Date: 2017
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/ncomms15731 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms15731
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms15731
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().