Cross-orientation suppression in visual area V2
Ryan J. Rowekamp and
Tatyana O. Sharpee ()
Additional contact information
Ryan J. Rowekamp: Computational Neurobiology Laboratory, Salk Institute for Biological Studies
Tatyana O. Sharpee: Computational Neurobiology Laboratory, Salk Institute for Biological Studies
Nature Communications, 2017, vol. 8, issue 1, 1-9
Abstract:
Abstract Object recognition relies on a series of transformations among which only the first cortical stage is relatively well understood. Already at the second stage, the visual area V2, the complexity of the transformation precludes a clear understanding of what specifically this area computes. Previous work has found multiple types of V2 neurons, with neurons of each type selective for multi-edge features. Here we analyse responses of V2 neurons to natural stimuli and find three organizing principles. First, the relevant edges for V2 neurons can be grouped into quadrature pairs, indicating invariance to local translation. Second, the excitatory edges have nearby suppressive edges with orthogonal orientations. Third, the resulting multi-edge patterns are repeated in space to form textures or texture boundaries. The cross-orientation suppression increases the sparseness of responses to natural images based on these complex forms of feature selectivity while allowing for multiple scales of position invariance.
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/ncomms15739 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms15739
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms15739
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().