EconPapers    
Economics at your fingertips  
 

Mutual synchronization of spin torque nano-oscillators through a long-range and tunable electrical coupling scheme

R. Lebrun, S. Tsunegi, P. Bortolotti, H. Kubota, A. S. Jenkins, M. Romera, K. Yakushiji, A. Fukushima, J. Grollier, S. Yuasa and V. Cros ()
Additional contact information
R. Lebrun: Unité Mixte de Physique CNRS, Thales, Université Paris-Sud, Université Paris-Saclay
S. Tsunegi: Unité Mixte de Physique CNRS, Thales, Université Paris-Sud, Université Paris-Saclay
P. Bortolotti: Unité Mixte de Physique CNRS, Thales, Université Paris-Sud, Université Paris-Saclay
H. Kubota: Spintronics Research Center, National Institute of Advanced Industrial Science and Technology (AIST)
A. S. Jenkins: Unité Mixte de Physique CNRS, Thales, Université Paris-Sud, Université Paris-Saclay
M. Romera: Unité Mixte de Physique CNRS, Thales, Université Paris-Sud, Université Paris-Saclay
K. Yakushiji: Spintronics Research Center, National Institute of Advanced Industrial Science and Technology (AIST)
A. Fukushima: Spintronics Research Center, National Institute of Advanced Industrial Science and Technology (AIST)
J. Grollier: Unité Mixte de Physique CNRS, Thales, Université Paris-Sud, Université Paris-Saclay
S. Yuasa: Spintronics Research Center, National Institute of Advanced Industrial Science and Technology (AIST)
V. Cros: Unité Mixte de Physique CNRS, Thales, Université Paris-Sud, Université Paris-Saclay

Nature Communications, 2017, vol. 8, issue 1, 1-7

Abstract: Abstract The concept of spin-torque-driven high-frequency magnetization dynamics, allows the potential construction of complex networks of non-linear dynamical nanoscale systems, combining the field of spintronics and the study of non-linear systems. In the few previous demonstrations of synchronization of several spin-torque oscillators, the short-range nature of the magnetic coupling that was used has largely hampered a complete control of the synchronization process. Here we demonstrate the successful mutual synchronization of two spin-torque oscillators with a large separation distance through their long range self-emitted microwave currents. This leads to a strong improvement of both the emitted power and the linewidth. The full control of the synchronized state is achieved at the nanoscale through two active spin transfer torques, but also externally through an electrical delay line. These additional levels of control of the synchronization capability provide a new approach to develop spin-torque oscillator-based nanoscale microwave-devices going from microwave-sources to bio-inspired networks.

Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.nature.com/articles/ncomms15825 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms15825

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/ncomms15825

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms15825