Ballistic edge states in Bismuth nanowires revealed by SQUID interferometry
Anil Murani,
Alik Kasumov,
Shamashis Sengupta,
Yu A. Kasumov,
V. T. Volkov,
I. I. Khodos,
F. Brisset,
Raphaëlle Delagrange,
Alexei Chepelianskii,
Richard Deblock,
Hélène Bouchiat () and
Sophie Guéron ()
Additional contact information
Anil Murani: Laboratoire de Physique des Solides, CNRS, Univ. Paris-Sud, Université Paris-Saclay
Alik Kasumov: Laboratoire de Physique des Solides, CNRS, Univ. Paris-Sud, Université Paris-Saclay
Shamashis Sengupta: Laboratoire de Physique des Solides, CNRS, Univ. Paris-Sud, Université Paris-Saclay
Yu A. Kasumov: Institute of Microelectronics Technology and High Purity Materials, RAS
V. T. Volkov: Institute of Microelectronics Technology and High Purity Materials, RAS
I. I. Khodos: Institute of Microelectronics Technology and High Purity Materials, RAS
F. Brisset: Institut de Chimie Moléculaire et des Matériaux d'Orsay, Univ. Paris-Sud, Université Paris-Saclay
Raphaëlle Delagrange: Laboratoire de Physique des Solides, CNRS, Univ. Paris-Sud, Université Paris-Saclay
Alexei Chepelianskii: Laboratoire de Physique des Solides, CNRS, Univ. Paris-Sud, Université Paris-Saclay
Richard Deblock: Laboratoire de Physique des Solides, CNRS, Univ. Paris-Sud, Université Paris-Saclay
Hélène Bouchiat: Laboratoire de Physique des Solides, CNRS, Univ. Paris-Sud, Université Paris-Saclay
Sophie Guéron: Laboratoire de Physique des Solides, CNRS, Univ. Paris-Sud, Université Paris-Saclay
Nature Communications, 2017, vol. 8, issue 1, 1-7
Abstract:
Abstract The protection against backscattering provided by topology is a striking property. In two-dimensional insulators, a consequence of this topological protection is the ballistic nature of the one-dimensional helical edge states. One demonstration of ballisticity is the quantized Hall conductance. Here we provide another demonstration of ballistic transport, in the way the edge states carry a supercurrent. The system we have investigated is a micrometre-long monocrystalline bismuth nanowire with topological surfaces, that we connect to two superconducting electrodes. We have measured the relation between the Josephson current flowing through the nanowire and the superconducting phase difference at its ends, the current–phase relation. The sharp sawtooth-shaped phase-modulated current–phase relation we find demonstrates that transport occurs selectively along two ballistic edges of the nanowire. In addition, we show that a magnetic field induces 0–π transitions and ϕ0-junction behaviour, providing a way to manipulate the phase of the supercurrent-carrying edge states and generate spin supercurrents.
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.nature.com/articles/ncomms15941 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms15941
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms15941
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().