EconPapers    
Economics at your fingertips  
 

Stability of iron-bearing carbonates in the deep Earth’s interior

Valerio Cerantola (), Elena Bykova (), Ilya Kupenko, Marco Merlini, Leyla Ismailova, Catherine McCammon, Maxim Bykov, Alexandr I. Chumakov, Sylvain Petitgirard, Innokenty Kantor, Volodymyr Svitlyk, Jeroen Jacobs, Michael Hanfland, Mohamed Mezouar, Clemens Prescher, Rudolf Rüffer, Vitali B. Prakapenka and Leonid Dubrovinsky ()
Additional contact information
Valerio Cerantola: European Synchrotron Radiation Facility
Elena Bykova: Bayerisches Geoinstitut, Universität Bayreuth
Ilya Kupenko: European Synchrotron Radiation Facility
Marco Merlini: Università degli Studi di Milano
Leyla Ismailova: Skolkovo Institute of Science and Technology, Center for Hydrocarbon recovery
Catherine McCammon: Bayerisches Geoinstitut, Universität Bayreuth
Maxim Bykov: Bayerisches Geoinstitut, Universität Bayreuth
Alexandr I. Chumakov: European Synchrotron Radiation Facility
Sylvain Petitgirard: Bayerisches Geoinstitut, Universität Bayreuth
Innokenty Kantor: European Synchrotron Radiation Facility
Volodymyr Svitlyk: European Synchrotron Radiation Facility
Jeroen Jacobs: European Synchrotron Radiation Facility
Michael Hanfland: European Synchrotron Radiation Facility
Mohamed Mezouar: European Synchrotron Radiation Facility
Clemens Prescher: Institute of Geology and Mineralogy, Universität zu Köln
Rudolf Rüffer: European Synchrotron Radiation Facility
Vitali B. Prakapenka: GSECARS, Center for Advanced Radiation Sources, University of Chicago
Leonid Dubrovinsky: Bayerisches Geoinstitut, Universität Bayreuth

Nature Communications, 2017, vol. 8, issue 1, 1-9

Abstract: Abstract The presence of carbonates in inclusions in diamonds coming from depths exceeding 670 km are obvious evidence that carbonates exist in the Earth’s lower mantle. However, their range of stability, crystal structures and the thermodynamic conditions of the decarbonation processes remain poorly constrained. Here we investigate the behaviour of pure iron carbonate at pressures over 100 GPa and temperatures over 2,500 K using single-crystal X-ray diffraction and Mössbauer spectroscopy in laser-heated diamond anvil cells. On heating to temperatures of the Earth’s geotherm at pressures to ∼50 GPa FeCO3 partially dissociates to form various iron oxides. At higher pressures FeCO3 forms two new structures—tetrairon(III) orthocarbonate Fe43+C3O12, and diiron(II) diiron(III) tetracarbonate Fe22+Fe23+C4O13, both phases containing CO4 tetrahedra. Fe4C4O13 is stable at conditions along the entire geotherm to depths of at least 2,500 km, thus demonstrating that self-oxidation-reduction reactions can preserve carbonates in the Earth’s lower mantle.

Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/ncomms15960 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms15960

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/ncomms15960

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms15960