Quantifying the critical thickness of electron hybridization in spintronics materials
T. Pincelli,
V. Lollobrigida,
F. Borgatti,
A. Regoutz,
B. Gobaut,
C. Schlueter,
T. -L. Lee,
D. J. Payne,
M. Oura,
K. Tamasaku,
A. Y. Petrov,
P. Graziosi,
F. Miletto Granozio,
M. Cavallini,
G. Vinai,
R. Ciprian,
C. H. Back,
G. Rossi,
M. Taguchi,
H. Daimon,
G. van der Laan and
G. Panaccione ()
Additional contact information
T. Pincelli: Istituto Officina dei Materiali-CNR, Laboratorio TASC
V. Lollobrigida: Istituto Officina dei Materiali-CNR, Laboratorio TASC
F. Borgatti: Consiglio Nazionale delle Ricerche—Istituto per lo Studio dei Materiali Nanostrutturati (CNR-ISMN)
A. Regoutz: Imperial College London, South Kensington
B. Gobaut: Sincrotrone Trieste S.C.p.A.
C. Schlueter: Diamond Light Source, Harwell Science and Innovation Campus
T. -L. Lee: Diamond Light Source, Harwell Science and Innovation Campus
D. J. Payne: Imperial College London, South Kensington
M. Oura: RIKEN SPring-8 Center
K. Tamasaku: RIKEN SPring-8 Center
A. Y. Petrov: Istituto Officina dei Materiali-CNR, Laboratorio TASC
P. Graziosi: Consiglio Nazionale delle Ricerche—Istituto per lo Studio dei Materiali Nanostrutturati (CNR-ISMN)
F. Miletto Granozio: CNR-SPIN, Complesso Universitario Monte S. Angelo
M. Cavallini: Consiglio Nazionale delle Ricerche—Istituto per lo Studio dei Materiali Nanostrutturati (CNR-ISMN)
G. Vinai: Istituto Officina dei Materiali-CNR, Laboratorio TASC
R. Ciprian: Istituto Officina dei Materiali-CNR, Laboratorio TASC
C. H. Back: Institut fur Experimentelle Physik, Universitat Regensburg
G. Rossi: Istituto Officina dei Materiali-CNR, Laboratorio TASC
M. Taguchi: RIKEN SPring-8 Center
H. Daimon: Nara Institute of Science and Technology
G. van der Laan: Diamond Light Source, Harwell Science and Innovation Campus
G. Panaccione: Istituto Officina dei Materiali-CNR, Laboratorio TASC
Nature Communications, 2017, vol. 8, issue 1, 1-8
Abstract:
Abstract In the rapidly growing field of spintronics, simultaneous control of electronic and magnetic properties is essential, and the perspective of building novel phases is directly linked to the control of tuning parameters, for example, thickness and doping. Looking at the relevant effects in interface-driven spintronics, the reduced symmetry at a surface and interface corresponds to a severe modification of the overlap of electron orbitals, that is, to a change of electron hybridization. Here we report a chemically and magnetically sensitive depth-dependent analysis of two paradigmatic systems, namely La1−xSrxMnO3 and (Ga,Mn)As. Supported by cluster calculations, we find a crossover between surface and bulk in the electron hybridization/correlation and we identify a spectroscopic fingerprint of bulk metallic character and ferromagnetism versus depth. The critical thickness and the gradient of hybridization are measured, setting an intrinsic limit of 3 and 10 unit cells from the surface, respectively, for (Ga,Mn)As and La1−xSrxMnO3, for fully restoring bulk properties.
Date: 2017
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/ncomms16051 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms16051
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms16051
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().