Cellular interfaces with hydrogen-bonded organic semiconductor hierarchical nanocrystals
Mykhailo Sytnyk,
Marie Jakešová,
Monika Litviňuková,
Oleksandr Mashkov,
Dominik Kriegner,
Julian Stangl,
Jana Nebesářová,
Frank W. Fecher,
Wolfgang Schöfberger,
Niyazi Serdar Sariciftci,
Rainer Schindl (),
Wolfgang Heiss () and
Eric Daniel Głowacki ()
Additional contact information
Mykhailo Sytnyk: Friedrich-Alexander-Universität Erlangen-Nürnberg
Marie Jakešová: Johannes Kepler University
Monika Litviňuková: Johannes Kepler University
Oleksandr Mashkov: Friedrich-Alexander-Universität Erlangen-Nürnberg
Dominik Kriegner: Charles University
Julian Stangl: University Linz
Jana Nebesářová: Biology Centre of the Czech Academy of Sciences—Institute of Parasitology
Frank W. Fecher: Bayerisches Zentrum für Angewandte Energieforschung (ZAE Bayern)
Wolfgang Schöfberger: Johannes Kepler University
Niyazi Serdar Sariciftci: Johannes Kepler University
Rainer Schindl: Johannes Kepler University
Wolfgang Heiss: Friedrich-Alexander-Universität Erlangen-Nürnberg
Eric Daniel Głowacki: Johannes Kepler University
Nature Communications, 2017, vol. 8, issue 1, 1-11
Abstract:
Abstract Successful formation of electronic interfaces between living cells and semiconductors hinges on being able to obtain an extremely close and high surface-area contact, which preserves both cell viability and semiconductor performance. To accomplish this, we introduce organic semiconductor assemblies consisting of a hierarchical arrangement of nanocrystals. These are synthesised via a colloidal chemical route that transforms the nontoxic commercial pigment quinacridone into various biomimetic three-dimensional arrangements of nanocrystals. Through a tuning of parameters such as precursor concentration, ligands and additives, we obtain complex size and shape control at room temperature. We elaborate hedgehog-shaped crystals comprising nanoscale needles or daggers that form intimate interfaces with the cell membrane, minimising the cleft with single cells without apparent detriment to viability. Excitation of such interfaces with light leads to effective cellular photostimulation. We find reversible light-induced conductance changes in ion-selective or temperature-gated channels.
Date: 2017
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-017-00135-0 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-00135-0
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-017-00135-0
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().