EconPapers    
Economics at your fingertips  
 

Sequential conformational transitions and α-helical supercoiling regulate a sensor histidine kinase

Oskar Berntsson, Ralph P. Diensthuber, Matthijs R. Panman, Alexander Björling, Emil Gustavsson, Maria Hoernke, Ashley J. Hughes, Léocadie Henry, Stephan Niebling, Heikki Takala, Janne A. Ihalainen, Gemma Newby, Silke Kerruth, Joachim Heberle, Marianne Liebi, Andreas Menzel, Robert Henning, Irina Kosheleva, Andreas Möglich () and Sebastian Westenhoff ()
Additional contact information
Oskar Berntsson: University of Gothenburg
Ralph P. Diensthuber: Humboldt-Universität zu Berlin
Matthijs R. Panman: University of Gothenburg
Alexander Björling: University of Gothenburg
Emil Gustavsson: University of Gothenburg
Maria Hoernke: University of Gothenburg
Ashley J. Hughes: University of Gothenburg
Léocadie Henry: University of Gothenburg
Stephan Niebling: University of Gothenburg
Heikki Takala: University of Gothenburg
Janne A. Ihalainen: University of Jyväskylä
Gemma Newby: European Synchrotron Radiation Facility
Silke Kerruth: Freie Universität Berlin
Joachim Heberle: Freie Universität Berlin
Marianne Liebi: Paul ScherrerInstitut
Andreas Menzel: Paul ScherrerInstitut
Robert Henning: The University of Chicago
Irina Kosheleva: The University of Chicago
Andreas Möglich: Humboldt-Universität zu Berlin
Sebastian Westenhoff: University of Gothenburg

Nature Communications, 2017, vol. 8, issue 1, 1-8

Abstract: Abstract Sensor histidine kinases are central to sensing in bacteria and in plants. They usually contain sensor, linker, and kinase modules and the structure of many of these components is known. However, it is unclear how the kinase module is structurally regulated. Here, we use nano- to millisecond time-resolved X-ray scattering to visualize the solution structural changes that occur when the light-sensitive model histidine kinase YF1 is activated by blue light. We find that the coiled coil linker and the attached histidine kinase domains undergo a left handed rotation within microseconds. In a much slower second step, the kinase domains rearrange internally. This structural mechanism presents a template for signal transduction in sensor histidine kinases.

Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.nature.com/articles/s41467-017-00300-5 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-00300-5

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-017-00300-5

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-00300-5