EconPapers    
Economics at your fingertips  
 

Demonstration of a beam loaded nanocoulomb-class laser wakefield accelerator

J. P. Couperus (), R. Pausch, A. Köhler, O. Zarini, J. M. Krämer, M. Garten, A. Huebl, R. Gebhardt, U. Helbig, S. Bock, K. Zeil, A. Debus, M. Bussmann, U. Schramm and A. Irman ()
Additional contact information
J. P. Couperus: Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics
R. Pausch: Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics
A. Köhler: Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics
O. Zarini: Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics
J. M. Krämer: Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics
M. Garten: Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics
A. Huebl: Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics
R. Gebhardt: Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics
U. Helbig: Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics
S. Bock: Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics
K. Zeil: Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics
A. Debus: Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics
M. Bussmann: Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics
U. Schramm: Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics
A. Irman: Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics

Nature Communications, 2017, vol. 8, issue 1, 1-7

Abstract: Laser-plasma wakefield accelerators have seen tremendous progress, now capable of producing quasi-monoenergetic electron beams in the GeV energy range with few-femtoseconds bunch duration. Scaling these accelerators to the nanocoulomb range would yield hundreds of kiloamperes peak current and stimulate the next generation of radiation sources covering high-field THz, high-brightness X-ray and γ-ray sources, compact free-electron lasers and laboratory-size beam-driven plasma accelerators. However, accelerators generating such currents operate in the beam loading regime where the accelerating field is strongly modified by the self-fields of the injected bunch, potentially deteriorating key beam parameters. Here we demonstrate that, if appropriately controlled, the beam loading effect can be employed to improve the accelerator’s performance. Self-truncated ionization injection enables loading of unprecedented charges of ∼0.5 nC within a mono-energetic peak. As the energy balance is reached, we show that the accelerator operates at the theoretically predicted optimal loading condition and the final energy spread is minimized.

Date: 2017
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-017-00592-7 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-00592-7

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-017-00592-7

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-00592-7