Observing the oxidation of platinum
Matthijs A. Spronsen (),
Joost W. M. Frenken and
Irene M. N. Groot
Additional contact information
Matthijs A. Spronsen: Leiden University
Joost W. M. Frenken: Leiden University
Irene M. N. Groot: Leiden University
Nature Communications, 2017, vol. 8, issue 1, 1-7
Abstract:
Abstract Despite its importance in oxidation catalysis, the active phase of Pt remains uncertain, even for the Pt(111) single-crystal surface. Here, using a ReactorSTM, the catalytically relevant structures are identified as two surface oxides, different from bulk α-PtO2, previously observed. They are constructed from expanded oxide rows with a lattice constant close to that of α-PtO2, either assembling into spoked wheels, 1–5 bar O2, or closely packed in parallel lines, above 2.2 bar. Both are only ordered at elevated temperatures (400–500 K). The triangular oxide can also form on the square lattice of Pt(100). Under NO and CO oxidation conditions, similar features are observed. Furthermore, both oxides are unstable outside the O2 atmosphere, indicating the presence of active O atoms, crucial for oxidation catalysts.
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/s41467-017-00643-z Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-00643-z
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-017-00643-z
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().