Multi-wavelength anomalous diffraction de novo phasing using a two-colour X-ray free-electron laser with wide tunability
Alexander Gorel,
Koji Motomura,
Hironobu Fukuzawa,
R. Bruce Doak,
Marie Luise Grünbein,
Mario Hilpert,
Ichiro Inoue,
Marco Kloos,
Gabriela Kovácsová,
Eriko Nango,
Karol Nass,
Christopher M. Roome,
Robert L. Shoeman,
Rie Tanaka,
Kensuke Tono,
Yasumasa Joti,
Makina Yabashi,
So Iwata,
Lutz Foucar,
Kiyoshi Ueda,
Thomas R. M. Barends and
Ilme Schlichting ()
Additional contact information
Alexander Gorel: Max-Planck-Institut für medizinische Forschung
Koji Motomura: Tohoku University
Hironobu Fukuzawa: Tohoku University
R. Bruce Doak: Max-Planck-Institut für medizinische Forschung
Marie Luise Grünbein: Max-Planck-Institut für medizinische Forschung
Mario Hilpert: Max-Planck-Institut für medizinische Forschung
Ichiro Inoue: RIKEN SPring-8 Center
Marco Kloos: Max-Planck-Institut für medizinische Forschung
Gabriela Kovácsová: Max-Planck-Institut für medizinische Forschung
Eriko Nango: RIKEN SPring-8 Center
Karol Nass: Max-Planck-Institut für medizinische Forschung
Christopher M. Roome: Max-Planck-Institut für medizinische Forschung
Robert L. Shoeman: Max-Planck-Institut für medizinische Forschung
Rie Tanaka: RIKEN SPring-8 Center
Kensuke Tono: Japan Synchrotron Radiation Research Institute
Yasumasa Joti: Japan Synchrotron Radiation Research Institute
Makina Yabashi: RIKEN SPring-8 Center
So Iwata: RIKEN SPring-8 Center
Lutz Foucar: Max-Planck-Institut für medizinische Forschung
Kiyoshi Ueda: Tohoku University
Thomas R. M. Barends: Max-Planck-Institut für medizinische Forschung
Ilme Schlichting: Max-Planck-Institut für medizinische Forschung
Nature Communications, 2017, vol. 8, issue 1, 1-8
Abstract:
Abstract Serial femtosecond crystallography at X-ray free-electron lasers (XFELs) offers unprecedented possibilities for macromolecular structure determination of systems prone to radiation damage. However, de novo structure determination, i.e., without prior structural knowledge, is complicated by the inherent inaccuracy of serial femtosecond crystallography data. By its very nature, serial femtosecond crystallography data collection entails shot-to-shot fluctuations in X-ray wavelength and intensity as well as variations in crystal size and quality that must be averaged out. Hence, to obtain accurate diffraction intensities for de novo phasing, large numbers of diffraction patterns are required, and, concomitantly large volumes of sample and long X-ray free-electron laser beamtimes. Here we show that serial femtosecond crystallography data collected using simultaneous two-colour X-ray free-electron laser pulses can be used for multiple wavelength anomalous dispersion phasing. The phase angle determination is significantly more accurate than for single-colour phasing. We anticipate that two-colour multiple wavelength anomalous dispersion phasing will enhance structure determination of difficult-to-phase proteins at X-ray free-electron lasers.
Date: 2017
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-017-00754-7 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-00754-7
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-017-00754-7
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().