EconPapers    
Economics at your fingertips  
 

A surface-stabilized ozonide triggers bromide oxidation at the aqueous solution-vapour interface

Luca Artiglia, Jacinta Edebeli, Fabrizio Orlando, Shuzhen Chen, Ming-Tao Lee, Pablo Corral Arroyo, Anina Gilgen, Thorsten Bartels-Rausch, Armin Kleibert, Mario Vazdar, Marcelo Andres Carignano, Joseph S. Francisco, Paul B. Shepson, Ivan Gladich () and Markus Ammann ()
Additional contact information
Luca Artiglia: Paul Scherrer Institut
Jacinta Edebeli: Paul Scherrer Institut
Fabrizio Orlando: Paul Scherrer Institut
Shuzhen Chen: Paul Scherrer Institut
Ming-Tao Lee: Paul Scherrer Institut
Pablo Corral Arroyo: Paul Scherrer Institut
Anina Gilgen: Paul Scherrer Institut
Thorsten Bartels-Rausch: Paul Scherrer Institut
Armin Kleibert: Paul Scherrer Institut
Mario Vazdar: Rudjer Bošković Institute
Marcelo Andres Carignano: Hamad Bin Khalifa University
Joseph S. Francisco: University of Nebraska-Lincoln
Paul B. Shepson: Purdue University
Ivan Gladich: Hamad Bin Khalifa University
Markus Ammann: Paul Scherrer Institut

Nature Communications, 2017, vol. 8, issue 1, 1-8

Abstract: Abstract Oxidation of bromide in aqueous environments initiates the formation of molecular halogen compounds, which is important for the global tropospheric ozone budget. In the aqueous bulk, oxidation of bromide by ozone involves a [Br•OOO−] complex as intermediate. Here we report liquid jet X-ray photoelectron spectroscopy measurements that provide direct experimental evidence for the ozonide and establish its propensity for the solution-vapour interface. Theoretical calculations support these findings, showing that water stabilizes the ozonide and lowers the energy of the transition state at neutral pH. Kinetic experiments confirm the dominance of the heterogeneous oxidation route established by this precursor at low, atmospherically relevant ozone concentrations. Taken together, our results provide a strong case of different reaction kinetics and mechanisms of reactions occurring at the aqueous phase-vapour interface compared with the bulk aqueous phase.

Date: 2017
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-017-00823-x Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-00823-x

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-017-00823-x

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-00823-x