Loss of β-catenin in resident cardiac fibroblasts attenuates fibrosis induced by pressure overload in mice
Fu-Li Xiang,
Ming Fang and
Katherine E. Yutzey ()
Additional contact information
Fu-Li Xiang: Cincinnati Children’s Hospital Medical Center
Ming Fang: Cincinnati Children’s Hospital Medical Center
Katherine E. Yutzey: Cincinnati Children’s Hospital Medical Center
Nature Communications, 2017, vol. 8, issue 1, 1-12
Abstract:
Abstract Cardiac fibrosis is characterized by excessive extracellular matrix deposition that contributes to compromised cardiac function and potentially heart failure. Cardiac pressure overload resulting from trans-aortic constriction in mice leads to cardiac fibrosis and increased Wnt/β-catenin signaling in cardiac fibroblasts. Here, we conditionally induce β-catenin loss of function in resident cardiac fibroblasts using Tcf21 MerCreMer or in activated cardiac fibroblasts using periostin (Postn) MerCreMer . We show that β-catenin loss of function in cardiac fibroblasts after trans-aortic constriction significantly preserves cardiac function, and reduces interstitial fibrosis but does not alter the numbers of activated or differentiated cardiac fibroblasts in vivo. However, β-catenin is specifically required in resident cardiac fibroblasts for fibrotic excessive extracellular matrix gene expression and binds Col3a1 and Postn gene sequences in cultured cardiac fibroblasts after induction of Wnt signaling. Moreover, cardiomyocyte hypertrophy is blunted with cardiac fibroblast-specific loss of β-catenin after trans-aortic constriction in vivo. Thus, Wnt/β-catenin signaling in resident cardiac fibroblasts is required for excessive extracellular matrix gene expression and collagen deposition after trans-aortic constriction.
Date: 2017
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-017-00840-w Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-00840-w
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-017-00840-w
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().