EconPapers    
Economics at your fingertips  
 

Mechanism of error-free replication across benzo[a]pyrene stereoisomers by Rev1 DNA polymerase

Olga Rechkoblit (), Alexander Kolbanovskiy, Hannah Landes, Nicholas E. Geacintov and Aneel K. Aggarwal
Additional contact information
Olga Rechkoblit: Icahn School of Medicine at Mount Sinai
Alexander Kolbanovskiy: New York University
Hannah Landes: Icahn School of Medicine at Mount Sinai
Nicholas E. Geacintov: New York University
Aneel K. Aggarwal: Icahn School of Medicine at Mount Sinai

Nature Communications, 2017, vol. 8, issue 1, 1-10

Abstract: Abstract Benzo[a]pyrene (BP) is a carcinogen in cigarette smoke which, after metabolic activation, can react with the exocyclic N 2 amino group of guanine to generate four stereoisomeric BP-N 2-dG adducts. Rev1 is unique among translesion synthesis DNA polymerases in employing a protein-template-directed mechanism of DNA synthesis opposite undamaged and damaged guanine. Here we report high-resolution structures of yeast Rev1 with three BP-N 2-dG adducts, namely the 10S (+)-trans-BP-N 2-dG, 10R (+)-cis-BP-N 2-dG, and 10S ( − )-cis-BP-N 2-dG. Surprisingly, in all three structures, the bulky and hydrophobic BP pyrenyl residue is entirely solvent-exposed in the major groove of the DNA. This is very different from the adduct alignments hitherto observed in free or protein-bound DNA. All complexes are well poised for dCTP insertion. Our structures provide a view of cis-BP-N 2-dG adducts in a DNA polymerase active site, and offer a basis for understanding error-free replication of the BP-derived stereoisomeric guanine adducts.

Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41467-017-01013-5 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01013-5

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-017-01013-5

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01013-5