EconPapers    
Economics at your fingertips  
 

Exciton fission in monolayer transition metal dichalcogenide semiconductors

A. Steinhoff (), M. Florian, M. Rösner, G. Schönhoff, T. O. Wehling and F. Jahnke
Additional contact information
A. Steinhoff: Institut für Theoretische Physik, Universität Bremen
M. Florian: Institut für Theoretische Physik, Universität Bremen
M. Rösner: Institut für Theoretische Physik, Universität Bremen
G. Schönhoff: Institut für Theoretische Physik, Universität Bremen
T. O. Wehling: Institut für Theoretische Physik, Universität Bremen
F. Jahnke: Institut für Theoretische Physik, Universität Bremen

Nature Communications, 2017, vol. 8, issue 1, 1-11

Abstract: Abstract When electron-hole pairs are excited in a semiconductor, it is a priori not clear if they form a plasma of unbound fermionic particles or a gas of composite bosons called excitons. Usually, the exciton phase is associated with low temperatures. In atomically thin transition metal dichalcogenide semiconductors, excitons are particularly important even at room temperature due to strong Coulomb interaction and a large exciton density of states. Using state-of-the-art many-body theory, we show that the thermodynamic fission–fusion balance of excitons and electron-hole plasma can be efficiently tuned via the dielectric environment as well as charge carrier doping. We propose the observation of these effects by studying exciton satellites in photoemission and tunneling spectroscopy, which present direct solid-state counterparts of high-energy collider experiments on the induced fission of composite particles.

Date: 2017
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-017-01298-6 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01298-6

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-017-01298-6

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01298-6