EconPapers    
Economics at your fingertips  
 

Giant magnetic splitting inducing near-unity valley polarization in van der Waals heterostructures

Philipp Nagler (), Mariana V. Ballottin, Anatolie A. Mitioglu, Fabian Mooshammer, Nicola Paradiso, Christoph Strunk, Rupert Huber, Alexey Chernikov, Peter C. M. Christianen, Christian Schüller and Tobias Korn ()
Additional contact information
Philipp Nagler: Universität Regensburg
Mariana V. Ballottin: Radboud University
Anatolie A. Mitioglu: Radboud University
Fabian Mooshammer: Universität Regensburg
Nicola Paradiso: Universität Regensburg
Christoph Strunk: Universität Regensburg
Rupert Huber: Universität Regensburg
Alexey Chernikov: Universität Regensburg
Peter C. M. Christianen: Radboud University
Christian Schüller: Universität Regensburg
Tobias Korn: Universität Regensburg

Nature Communications, 2017, vol. 8, issue 1, 1-6

Abstract: Abstract Monolayers of semiconducting transition metal dichalcogenides exhibit intriguing fundamental physics of strongly coupled spin and valley degrees of freedom for charge carriers. While the possibility of exploiting these properties for information processing stimulated concerted research activities towards the concept of valleytronics, maintaining control over spin–valley polarization proved challenging in individual monolayers. A promising alternative route explores type II band alignment in artificial van der Waals heterostructures. The resulting formation of interlayer excitons combines the advantages of long carrier lifetimes and spin–valley locking. Here, we demonstrate artificial design of a two-dimensional heterostructure enabling intervalley transitions that are not accessible in monolayer systems. The resulting giant effective g factor of −15 for interlayer excitons induces near-unity valley polarization via valley-selective energetic splitting in high magnetic fields, even after nonselective excitation. Our results highlight the potential to deterministically engineer novel valley properties in van der Waals heterostructures using crystallographic alignment.

Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
https://www.nature.com/articles/s41467-017-01748-1 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01748-1

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-017-01748-1

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01748-1