EconPapers    
Economics at your fingertips  
 

Vocal learning promotes patterned inhibitory connectivity

Mark N. Miller (), Chung Yan J. Cheung and Michael S. Brainard
Additional contact information
Mark N. Miller: University of California-San Francisco
Chung Yan J. Cheung: Program, University of California-San Francisco
Michael S. Brainard: University of California-San Francisco

Nature Communications, 2017, vol. 8, issue 1, 1-9

Abstract: Abstract Skill learning is instantiated by changes to functional connectivity within premotor circuits, but whether the specificity of learning depends on structured changes to inhibitory circuitry remains unclear. We used slice electrophysiology to measure connectivity changes associated with song learning in the avian analog of primary motor cortex (robust nucleus of the arcopallium, RA) in Bengalese Finches. Before song learning, fast-spiking interneurons (FSIs) densely innervated glutamatergic projection neurons (PNs) with apparently random connectivity. After learning, there was a profound reduction in the overall strength and number of inhibitory connections, but this was accompanied by a more than two-fold enrichment in reciprocal FSI–PN connections. Moreover, in singing birds, we found that pharmacological manipulations of RA's inhibitory circuitry drove large shifts in learned vocal features, such as pitch and amplitude, without grossly disrupting the song. Our results indicate that skill learning establishes nonrandom inhibitory connectivity, and implicates this patterning in encoding specific features of learned movements.

Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.nature.com/articles/s41467-017-01914-5 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01914-5

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-017-01914-5

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01914-5