EconPapers    
Economics at your fingertips  
 

Inhibiting Rho kinase promotes goal-directed decision making and blocks habitual responding for cocaine

Andrew M. Swanson, Lauren M. DePoy and Shannon L. Gourley ()
Additional contact information
Andrew M. Swanson: Emory University School of Medicine
Lauren M. DePoy: Emory University School of Medicine
Shannon L. Gourley: Emory University School of Medicine

Nature Communications, 2017, vol. 8, issue 1, 1-12

Abstract: Abstract The prelimbic prefrontal cortex is necessary for associating actions with their consequences, enabling goal-directed decision making. We find that the strength of action–outcome conditioning correlates with dendritic spine density in prelimbic cortex, suggesting that new action–outcome learning involves dendritic spine plasticity. To test this, we inhibited the cytoskeletal regulatory factor Rho kinase. We find that the inhibitor fasudil enhances action–outcome memory, resulting in goal-directed behavior in mice that would otherwise express stimulus-response habits. Fasudil transiently reduces prelimbic cortical dendritic spine densities during a period of presumed memory consolidation, but only when paired with new learning. Fasudil also blocks habitual responding for cocaine, an effect that persists over time, across multiple contexts, and depends on actin polymerization. We suggest that Rho kinase inhibition promotes goal-oriented action selection by augmenting the plasticity of prelimbic cortical dendritic spines during the formation of new action–outcome memories.

Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41467-017-01915-4 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01915-4

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-017-01915-4

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01915-4