EconPapers    
Economics at your fingertips  
 

Geochemical and mineralogical evidence that Rodinian assembly was unique

Chao Liu (), Andrew H. Knoll and Robert M. Hazen
Additional contact information
Chao Liu: Carnegie Institution for Science
Andrew H. Knoll: Harvard University
Robert M. Hazen: Carnegie Institution for Science

Nature Communications, 2017, vol. 8, issue 1, 1-7

Abstract: Abstract The mineralogy and geochemistry associated with Rodinian assembly (~1.3–0.9 Ga) are significantly different from those of other supercontinents. Compared to other supercontinents, relatively more Nb-bearing minerals, Y-bearing minerals, and zircons formed during Rodinian assembly, with corresponding enrichments of Nb, Y, and Zr concentrations in igneous rocks. By contrast, minerals bearing many other elements (e.g., Ni, Co, Au, Se, and platinum group elements) are significantly less abundant, without corresponding depletion of Ni and Co concentrations in igneous rocks. Here we suggest that the Nb, Y, and Zr enrichments in igneous rocks and relatively more occurrences of corresponding Nb-bearing minerals, Y-bearing minerals, and zircons result from significant non-arc magmatism during the mid-Proterozoic, while fewer occurrences of many other minerals suggest enhanced erosion of Rodinian volcanic arcs and orogens. The prolonged, extrovert assembly of Rodinia from thickened mid-Proterozoic continental crust via two-sided subduction can account for both the prevalence of non-arc magmatism and the enhanced erosion.

Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41467-017-02095-x Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-02095-x

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-017-02095-x

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-02095-x