Harmonic phase in polar liquids and spin ice
Steven T. Bramwell ()
Additional contact information
Steven T. Bramwell: University College London
Nature Communications, 2017, vol. 8, issue 1, 1-9
Abstract:
Abstract Many liquid or liquid-like states remain stable down to temperatures well below the interaction energy scale, where mean-field theory predicts an ordering transition. In magnetism, correlated states such as spin ice and the spin liquid have been described as Coulomb phases, governed by an emergent gauge principle. In the physical chemistry of polar liquids, systems that evade mean field order have, in contrast, been described by Onsager’s theory of the reaction field. Here we observe that in the low-temperature limit, Onsager’s theory may be cast as a prototypical theory of the Coulomb phase. However at finite temperature, it describes a distinct geometrical state, characterised by harmonic functions. This state, labelled here the ‘harmonic phase’, is shown to occur experimentally in spin ice, a dipolar lattice system. It is suggested to be relevant to more general dipolar liquids.
Date: 2017
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-017-02102-1 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-02102-1
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-017-02102-1
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().