EconPapers    
Economics at your fingertips  
 

Hippocampal-prefrontal theta-gamma coupling during performance of a spatial working memory task

Makoto Tamura, Timothy J. Spellman, Andrew M. Rosen, Joseph A. Gogos () and Joshua A. Gordon ()
Additional contact information
Makoto Tamura: Columbia University
Timothy J. Spellman: Columbia University
Andrew M. Rosen: Columbia University
Joseph A. Gogos: Columbia University
Joshua A. Gordon: Columbia University

Nature Communications, 2017, vol. 8, issue 1, 1-9

Abstract: Abstract Cross-frequency coupling supports the organization of brain rhythms and is present during a range of cognitive functions. However, little is known about whether and how long-range cross-frequency coupling across distant brain regions subserves working memory. Here we report that theta–slow gamma coupling between the hippocampus and medial prefrontal cortex (mPFC) is augmented in a genetic mouse model of cognitive dysfunction. This increased cross-frequency coupling is observed specifically when the mice successfully perform a spatial working memory task. In wild-type mice, increasing task difficulty by introducing a long delay or by optogenetically interfering with encoding, also increases theta–gamma coupling during correct trials. Finally, epochs of high hippocampal theta–prefrontal slow gamma coupling are associated with increased synchronization of neurons within the mPFC. These findings suggest that enhancement of theta–slow gamma coupling reflects a compensatory mechanism to maintain spatial working memory performance in the setting of increased difficulty.

Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41467-017-02108-9 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-02108-9

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-017-02108-9

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-02108-9