EconPapers    
Economics at your fingertips  
 

Fundamental interplay between anionic/cationic redox governing the kinetics and thermodynamics of lithium-rich cathodes

Gaurav Assat, Dominique Foix, Charles Delacourt, Antonella Iadecola, Rémi Dedryvère () and Jean-Marie Tarascon ()
Additional contact information
Gaurav Assat: Chimie du Solide et de l’Energie—UMR CNRS 8260
Dominique Foix: Réseau sur le Stockage Electrochimique de l’Energie (RS2E)—FR CNRS 3459
Charles Delacourt: Réseau sur le Stockage Electrochimique de l’Energie (RS2E)—FR CNRS 3459
Antonella Iadecola: Réseau sur le Stockage Electrochimique de l’Energie (RS2E)—FR CNRS 3459
Rémi Dedryvère: Réseau sur le Stockage Electrochimique de l’Energie (RS2E)—FR CNRS 3459
Jean-Marie Tarascon: Chimie du Solide et de l’Energie—UMR CNRS 8260

Nature Communications, 2017, vol. 8, issue 1, 1-12

Abstract: Abstract Reversible anionic redox has rejuvenated the search for high-capacity lithium-ion battery cathodes. Real-world success necessitates the holistic mastering of this electrochemistry’s kinetics, thermodynamics, and stability. Here we prove oxygen redox reactivity in the archetypical lithium- and manganese-rich layered cathodes through bulk-sensitive synchrotron-based spectroscopies, and elucidate their complete anionic/cationic charge-compensation mechanism. Furthermore, via various electroanalytical methods, we answer how the anionic/cationic interplay governs application-wise important issues—namely sluggish kinetics, large hysteresis, and voltage fade—that afflict these promising cathodes despite widespread industrial and academic efforts. We find that cationic redox is kinetically fast and without hysteresis unlike sluggish anions, which furthermore show different oxidation vs. reduction potentials. Additionally, more time spent with fully oxidized oxygen promotes voltage fade. These fundamental insights about anionic redox are indispensable for improving lithium-rich cathodes. Moreover, our methodology provides guidelines for assessing the merits of existing and future anionic redox-based high-energy cathodes, which are being discovered rapidly.

Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://www.nature.com/articles/s41467-017-02291-9 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-02291-9

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-017-02291-9

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-02291-9