EconPapers    
Economics at your fingertips  
 

Imaging the square of the correlated two-electron wave function of a hydrogen molecule

M. Waitz, R. Y. Bello, D. Metz, J. Lower, F. Trinter, C. Schober, M. Keiling, U. Lenz, M. Pitzer, K. Mertens, M. Martins, J. Viefhaus, S. Klumpp, T. Weber, L. Ph. H. Schmidt, J. B. Williams, M. S. Schöffler, V. V. Serov, A. S. Kheifets, L. Argenti, A. Palacios, F. Martín (), T. Jahnke and R. Dörner ()
Additional contact information
M. Waitz: J. W. Goethe Universität
R. Y. Bello: Universidad Autónoma de Madrid
D. Metz: J. W. Goethe Universität
J. Lower: J. W. Goethe Universität
F. Trinter: J. W. Goethe Universität
C. Schober: J. W. Goethe Universität
M. Keiling: J. W. Goethe Universität
U. Lenz: J. W. Goethe Universität
M. Pitzer: Universität Kassel
K. Mertens: Universität Hamburg
M. Martins: Universität Hamburg
J. Viefhaus: Deutsches Elektronen-Synchrotron DESY
S. Klumpp: Deutsches Elektronen-Synchrotron DESY
T. Weber: Lawrence Berkeley National Laboratory
L. Ph. H. Schmidt: J. W. Goethe Universität
J. B. Williams: University of Nevada Reno
M. S. Schöffler: J. W. Goethe Universität
V. V. Serov: Saratov State University
A. S. Kheifets: The Australian National University
L. Argenti: Universidad Autónoma de Madrid
A. Palacios: Universidad Autónoma de Madrid
F. Martín: Universidad Autónoma de Madrid
T. Jahnke: J. W. Goethe Universität
R. Dörner: J. W. Goethe Universität

Nature Communications, 2017, vol. 8, issue 1, 1-8

Abstract: Abstract The toolbox for imaging molecules is well-equipped today. Some techniques visualize the geometrical structure, others the electron density or electron orbitals. Molecules are many-body systems for which the correlation between the constituents is decisive and the spatial and the momentum distribution of one electron depends on those of the other electrons and the nuclei. Such correlations have escaped direct observation by imaging techniques so far. Here, we implement an imaging scheme which visualizes correlations between electrons by coincident detection of the reaction fragments after high energy photofragmentation. With this technique, we examine the H2 two-electron wave function in which electron–electron correlation beyond the mean-field level is prominent. We visualize the dependence of the wave function on the internuclear distance. High energy photoelectrons are shown to be a powerful tool for molecular imaging. Our study paves the way for future time resolved correlation imaging at FELs and laser based X-ray sources.

Date: 2017
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-017-02437-9 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-02437-9

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-017-02437-9

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-02437-9