Self-generated surface magnetic fields inhibit laser-driven sheath acceleration of high-energy protons
M. Nakatsutsumi (),
Y. Sentoku,
A. Korzhimanov,
S. N. Chen,
S. Buffechoux,
A. Kon,
B. Atherton,
P. Audebert,
M. Geissel,
L. Hurd,
M. Kimmel,
P. Rambo,
M. Schollmeier,
J. Schwarz,
M. Starodubtsev,
L. Gremillet,
R. Kodama and
J. Fuchs ()
Additional contact information
M. Nakatsutsumi: LULI—CNRS, École Polytechnique, CEA: Université Paris-Saclay; UPMC Univ Paris 06: Sorbonne Universités
Y. Sentoku: Osaka University
A. Korzhimanov: Institute of Applied Physics
S. N. Chen: LULI—CNRS, École Polytechnique, CEA: Université Paris-Saclay; UPMC Univ Paris 06: Sorbonne Universités
S. Buffechoux: LULI—CNRS, École Polytechnique, CEA: Université Paris-Saclay; UPMC Univ Paris 06: Sorbonne Universités
A. Kon: Osaka University
B. Atherton: Sandia National Laboratories
P. Audebert: LULI—CNRS, École Polytechnique, CEA: Université Paris-Saclay; UPMC Univ Paris 06: Sorbonne Universités
M. Geissel: Sandia National Laboratories
L. Hurd: LULI—CNRS, École Polytechnique, CEA: Université Paris-Saclay; UPMC Univ Paris 06: Sorbonne Universités
M. Kimmel: Sandia National Laboratories
P. Rambo: Sandia National Laboratories
M. Schollmeier: Sandia National Laboratories
J. Schwarz: Sandia National Laboratories
M. Starodubtsev: Institute of Applied Physics
L. Gremillet: CEA, DAM, DIF
R. Kodama: Osaka University
J. Fuchs: LULI—CNRS, École Polytechnique, CEA: Université Paris-Saclay; UPMC Univ Paris 06: Sorbonne Universités
Nature Communications, 2018, vol. 9, issue 1, 1-9
Abstract:
Abstract High-intensity lasers interacting with solid foils produce copious numbers of relativistic electrons, which in turn create strong sheath electric fields around the target. The proton beams accelerated in such fields have remarkable properties, enabling ultrafast radiography of plasma phenomena or isochoric heating of dense materials. In view of longer-term multidisciplinary purposes (e.g., spallation neutron sources or cancer therapy), the current challenge is to achieve proton energies well in excess of 100 MeV, which is commonly thought to be possible by raising the on-target laser intensity. Here we present experimental and numerical results demonstrating that magnetostatic fields self-generated on the target surface may pose a fundamental limit to sheath-driven ion acceleration for high enough laser intensities. Those fields can be strong enough (~105 T at laser intensities ~1021 W cm–2) to magnetize the sheath electrons and deflect protons off the accelerating region, hence degrading the maximum energy the latter can acquire.
Date: 2018
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-017-02436-w Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-017-02436-w
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-017-02436-w
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().