Global and regional importance of the direct dust-climate feedback
Jasper F. Kok (),
Daniel S. Ward,
Natalie M. Mahowald and
Amato T. Evan
Additional contact information
Jasper F. Kok: University of California
Daniel S. Ward: Princeton University
Natalie M. Mahowald: Cornell University
Amato T. Evan: University of California
Nature Communications, 2018, vol. 9, issue 1, 1-11
Abstract:
Abstract Feedbacks between the global dust cycle and the climate system might have amplified past climate changes. Yet, it remains unclear what role the dust–climate feedback will play in future anthropogenic climate change. Here, we estimate the direct dust–climate feedback, arising from changes in the dust direct radiative effect (DRE), using a simple theoretical framework that combines constraints on the dust DRE with a series of climate model results. We find that the direct dust–climate feedback is likely in the range of −0.04 to +0.02 Wm −2 K−1, such that it could account for a substantial fraction of the total aerosol feedbacks in the climate system. On a regional scale, the direct dust–climate feedback is enhanced by approximately an order of magnitude close to major source regions. This suggests that it could play an important role in shaping the future climates of Northern Africa, the Sahel, the Mediterranean region, the Middle East, and Central Asia.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
https://www.nature.com/articles/s41467-017-02620-y Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-017-02620-y
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-017-02620-y
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().