Microbiota derived short chain fatty acids promote histone crotonylation in the colon through histone deacetylases
Rachel Fellows,
Jérémy Denizot,
Claudia Stellato,
Alessandro Cuomo,
Payal Jain,
Elena Stoyanova,
Szabina Balázsi,
Zoltán Hajnády,
Anke Liebert,
Juri Kazakevych,
Hector Blackburn,
Renan Oliveira Corrêa,
José Luís Fachi,
Fabio Takeo Sato,
Willian R. Ribeiro,
Caroline Marcantonio Ferreira,
Hélène Perée,
Mariangela Spagnuolo,
Raphaël Mattiuz,
Csaba Matolcsi,
Joana Guedes,
Jonathan Clark,
Marc Veldhoen,
Tiziana Bonaldi (),
Marco Aurélio Ramirez Vinolo () and
Patrick Varga-Weisz ()
Additional contact information
Rachel Fellows: Babraham Institute
Jérémy Denizot: Babraham Institute
Claudia Stellato: Babraham Institute
Alessandro Cuomo: Istituto Europeo di Oncologia
Payal Jain: Babraham Institute
Elena Stoyanova: Babraham Institute
Szabina Balázsi: Babraham Institute
Zoltán Hajnády: Babraham Institute
Anke Liebert: Babraham Institute
Juri Kazakevych: Babraham Institute
Hector Blackburn: Babraham Institute
Renan Oliveira Corrêa: UNICAMP
José Luís Fachi: UNICAMP
Fabio Takeo Sato: UNICAMP
Willian R. Ribeiro: Universidade Federal de São Paulo
Caroline Marcantonio Ferreira: Universidade Federal de São Paulo
Hélène Perée: Babraham Institute
Mariangela Spagnuolo: Babraham Institute
Raphaël Mattiuz: Babraham Institute
Csaba Matolcsi: Babraham Institute
Joana Guedes: Babraham Institute
Jonathan Clark: Babraham Institute
Marc Veldhoen: Babraham Institute
Tiziana Bonaldi: Istituto Europeo di Oncologia
Marco Aurélio Ramirez Vinolo: UNICAMP
Patrick Varga-Weisz: Babraham Institute
Nature Communications, 2018, vol. 9, issue 1, 1-15
Abstract:
Abstract The recently discovered histone post-translational modification crotonylation connects cellular metabolism to gene regulation. Its regulation and tissue-specific functions are poorly understood. We characterize histone crotonylation in intestinal epithelia and find that histone H3 crotonylation at lysine 18 is a surprisingly abundant modification in the small intestine crypt and colon, and is linked to gene regulation. We show that this modification is highly dynamic and regulated during the cell cycle. We identify class I histone deacetylases, HDAC1, HDAC2, and HDAC3, as major executors of histone decrotonylation. We show that known HDAC inhibitors, including the gut microbiota-derived butyrate, affect histone decrotonylation. Consistent with this, we find that depletion of the gut microbiota leads to a global change in histone crotonylation in the colon. Our results suggest that histone crotonylation connects chromatin to the gut microbiota, at least in part, via short-chain fatty acids and HDACs.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.nature.com/articles/s41467-017-02651-5 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-017-02651-5
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-017-02651-5
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().