EconPapers    
Economics at your fingertips  
 

Engineering the vibrational coherence of vision into a synthetic molecular device

Moussa Gueye, Madushanka Manathunga, Damianos Agathangelou, Yoelvis Orozco, Marco Paolino, Stefania Fusi, Stefan Haacke, Massimo Olivucci () and Jérémie Léonard ()
Additional contact information
Moussa Gueye: Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg
Madushanka Manathunga: Bowling Green State University
Damianos Agathangelou: Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg
Yoelvis Orozco: Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg
Marco Paolino: Università di Siena
Stefania Fusi: Università di Siena
Stefan Haacke: Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg
Massimo Olivucci: Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg
Jérémie Léonard: Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg

Nature Communications, 2018, vol. 9, issue 1, 1-8

Abstract: Abstract The light-induced double-bond isomerization of the visual pigment rhodopsin operates a molecular-level optomechanical energy transduction, which triggers a crucial protein structure change. In fact, rhodopsin isomerization occurs according to a unique, ultrafast mechanism that preserves mode-specific vibrational coherence all the way from the reactant excited state to the primary photoproduct ground state. The engineering of such an energy-funnelling function in synthetic compounds would pave the way towards biomimetic molecular machines capable of achieving optimum light-to-mechanical energy conversion. Here we use resonance and off-resonance vibrational coherence spectroscopy to demonstrate that a rhodopsin-like isomerization operates in a biomimetic molecular switch in solution. Furthermore, by using quantum chemical simulations, we show why the observed coherent nuclear motion critically depends on minor chemical modifications capable to induce specific geometric and electronic effects. This finding provides a strategy for engineering vibrationally coherent motions in other synthetic systems.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41467-017-02668-w Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-017-02668-w

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-017-02668-w

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-017-02668-w