EconPapers    
Economics at your fingertips  
 

Atmospheric CO2 effect on stable carbon isotope composition of terrestrial fossil archives

Vincent J. Hare (), Emma Loftus, Amy Jeffrey and Christopher Bronk Ramsey
Additional contact information
Vincent J. Hare: University of Oxford
Emma Loftus: University of Oxford
Amy Jeffrey: University of Oxford
Christopher Bronk Ramsey: University of Oxford

Nature Communications, 2018, vol. 9, issue 1, 1-8

Abstract: Abstract The 13C/12C ratio of C3 plant matter is thought to be controlled by the isotopic composition of atmospheric CO2 and stomatal response to environmental conditions, particularly mean annual precipitation (MAP). The effect of CO2 concentration on 13C/12C ratios is currently debated, yet crucial to reconstructing ancient environments and quantifying the carbon cycle. Here we compare high-resolution ice core measurements of atmospheric CO2 with fossil plant and faunal isotope records. We show the effect of pCO2 during the last deglaciation is stronger for gymnosperms (−1.4 ± 1.2‰) than angiosperms/fauna (−0.5 ± 1.5‰), while the contributions from changing MAP are −0.3 ± 0.6‰ and −0.4 ± 0.4‰, respectively. Previous studies have assumed that plant 13C/12C ratios are mostly determined by MAP, an assumption which is sometimes incorrect in geological time. Atmospheric effects must be taken into account when interpreting terrestrial stable carbon isotopes, with important implications for past environments and climates, and understanding plant responses to climate change.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41467-017-02691-x Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-017-02691-x

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-017-02691-x

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-017-02691-x