EconPapers    
Economics at your fingertips  
 

Beyond a phenomenological description of magnetostriction

A. H. Reid (), X. Shen, P. Maldonado, T. Chase, E. Jal, P. W. Granitzka, K. Carva, R. K. Li, J. Li, L. Wu, T. Vecchione, T. Liu, Z. Chen, D. J. Higley, N. Hartmann, R. Coffee, J. Wu, G. L. Dakovski, W. F. Schlotter, H. Ohldag, Y. K. Takahashi, V. Mehta, O. Hellwig, A. Fry, Y. Zhu, J. Cao, E. E. Fullerton, J. Stöhr, P. M. Oppeneer, X. J. Wang and H. A. Dürr ()
Additional contact information
A. H. Reid: SLAC National Accelerator Laboratory
X. Shen: SLAC National Accelerator Laboratory
P. Maldonado: Uppsala University
T. Chase: SLAC National Accelerator Laboratory
E. Jal: SLAC National Accelerator Laboratory
P. W. Granitzka: SLAC National Accelerator Laboratory
K. Carva: Charles University
R. K. Li: SLAC National Accelerator Laboratory
J. Li: Brookhaven National Laboratory
L. Wu: Brookhaven National Laboratory
T. Vecchione: SLAC National Accelerator Laboratory
T. Liu: SLAC National Accelerator Laboratory
Z. Chen: SLAC National Accelerator Laboratory
D. J. Higley: SLAC National Accelerator Laboratory
N. Hartmann: SLAC National Accelerator Laboratory
R. Coffee: SLAC National Accelerator Laboratory
J. Wu: SLAC National Accelerator Laboratory
G. L. Dakovski: SLAC National Accelerator Laboratory
W. F. Schlotter: SLAC National Accelerator Laboratory
H. Ohldag: SLAC National Accelerator Laboratory
Y. K. Takahashi: National Institute for Materials Science
V. Mehta: HGST a Western Digital Company
O. Hellwig: HGST a Western Digital Company
A. Fry: SLAC National Accelerator Laboratory
Y. Zhu: Brookhaven National Laboratory
J. Cao: Florida State University
E. E. Fullerton: UC San Diego
J. Stöhr: SLAC National Accelerator Laboratory
P. M. Oppeneer: Uppsala University
X. J. Wang: SLAC National Accelerator Laboratory
H. A. Dürr: SLAC National Accelerator Laboratory

Nature Communications, 2018, vol. 9, issue 1, 1-9

Abstract: Abstract Magnetostriction, the strain induced by a change in magnetization, is a universal effect in magnetic materials. Owing to the difficulty in unraveling its microscopic origin, it has been largely treated phenomenologically. Here, we show how the source of magnetostriction—the underlying magnetoelastic stress—can be separated in the time domain, opening the door for an atomistic understanding. X-ray and electron diffraction are used to separate the sub-picosecond spin and lattice responses of FePt nanoparticles. Following excitation with a 50-fs laser pulse, time-resolved X-ray diffraction demonstrates that magnetic order is lost within the nanoparticles with a time constant of 146 fs. Ultrafast electron diffraction reveals that this demagnetization is followed by an anisotropic, three-dimensional lattice motion. Analysis of the size, speed, and symmetry of the lattice motion, together with ab initio calculations accounting for the stresses due to electrons and phonons, allow us to reveal the magnetoelastic stress generated by demagnetization.

Date: 2018
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-017-02730-7 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-017-02730-7

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-017-02730-7

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-017-02730-7