EconPapers    
Economics at your fingertips  
 

Facile storage and release of white phosphorus and yellow arsenic

Andreas E. Seitz, Felix Hippauf, Werner Kremer, Stefan Kaskel and Manfred Scheer ()
Additional contact information
Andreas E. Seitz: University of Regensburg
Felix Hippauf: Technical University of Dresden
Werner Kremer: University of Regensburg
Stefan Kaskel: Technical University of Dresden
Manfred Scheer: University of Regensburg

Nature Communications, 2018, vol. 9, issue 1, 1-6

Abstract: Abstract The storage of metastable compounds and modifications of elements are of great interest for synthesis and other, e.g., semiconductor, applications. Whereas white phosphorus is a metastable modification that can be stored under certain conditions, storage of the extremely (light- and air-)sensitive form of arsenic, yellow arsenic, is a challenge rarely tackled so far. Herein, we report on the facile storage and release of these tetrahedral E4 molecules (E = P, As) using activated carbon as a porous storage material. These loaded materials are air- and light-stable and have been comprehensively characterized by solid-state 31P{1H} MAS NMR spectroscopy, powder X-ray diffraction analysis, nitrogen adsorption measurements, and thermogravimetric analysis. Additionally, we show that these materials can be used as a suitable E4 source for releasing intact white phosphorus or yellow arsenic, enabling subsequent reactions in solution. Because the uptake and release of E4 are reversible, these materials are excellent carriers of these highly reactive modifications.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41467-017-02735-2 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-017-02735-2

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-017-02735-2

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-22
Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-017-02735-2