Laboratory evidence of dynamo amplification of magnetic fields in a turbulent plasma
P. Tzeferacos,
A. Rigby,
A. F. A. Bott,
A. R. Bell,
R. Bingham,
A. Casner,
F. Cattaneo,
E. M. Churazov,
J. Emig,
F. Fiuza,
C. B. Forest,
J. Foster,
C. Graziani,
J. Katz,
M. Koenig,
C.-K. Li,
J. Meinecke,
R. Petrasso,
H.-S. Park,
B. A. Remington,
J. S. Ross,
D. Ryu,
D. Ryutov,
T. G. White,
B. Reville,
F. Miniati,
A. A. Schekochihin,
D. Q. Lamb,
D. H. Froula and
G. Gregori ()
Additional contact information
P. Tzeferacos: University of Oxford
A. Rigby: University of Oxford
A. F. A. Bott: University of Oxford
A. R. Bell: University of Oxford
R. Bingham: Rutherford Appleton Laboratory
A. Casner: CEA, DAM, DIF
F. Cattaneo: University of Chicago
E. M. Churazov: Max Planck Institute for Astrophysics
J. Emig: Lawrence Livermore National Laboratory
F. Fiuza: SLAC National Accelerator Laboratory
C. B. Forest: University of Wisconsin-Madison
J. Foster: AWE, Aldermaston
C. Graziani: University of Chicago
J. Katz: University of Rochester
M. Koenig: Université Paris VI Ecole Polytechnique
C.-K. Li: Massachusetts Institute of Technology
J. Meinecke: University of Oxford
R. Petrasso: Massachusetts Institute of Technology
H.-S. Park: Lawrence Livermore National Laboratory
B. A. Remington: Lawrence Livermore National Laboratory
J. S. Ross: Lawrence Livermore National Laboratory
D. Ryu: UNIST
D. Ryutov: Lawrence Livermore National Laboratory
T. G. White: University of Oxford
B. Reville: Queens University Belfast
F. Miniati: ETH Zürich
A. A. Schekochihin: University of Oxford
D. Q. Lamb: University of Chicago
D. H. Froula: University of Rochester
G. Gregori: University of Oxford
Nature Communications, 2018, vol. 9, issue 1, 1-8
Abstract:
Abstract Magnetic fields are ubiquitous in the Universe. The energy density of these fields is typically comparable to the energy density of the fluid motions of the plasma in which they are embedded, making magnetic fields essential players in the dynamics of the luminous matter. The standard theoretical model for the origin of these strong magnetic fields is through the amplification of tiny seed fields via turbulent dynamo to the level consistent with current observations. However, experimental demonstration of the turbulent dynamo mechanism has remained elusive, since it requires plasma conditions that are extremely hard to re-create in terrestrial laboratories. Here we demonstrate, using laser-produced colliding plasma flows, that turbulence is indeed capable of rapidly amplifying seed fields to near equipartition with the turbulent fluid motions. These results support the notion that turbulent dynamo is a viable mechanism responsible for the observed present-day magnetization.
Date: 2018
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-018-02953-2 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-02953-2
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-018-02953-2
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().