EconPapers    
Economics at your fingertips  
 

A quantum optical study of thresholdless lasing features in high-β nitride nanobeam cavities

Stefan T. Jagsch, Noelia Vico Triviño, Frederik Lohof, Gordon Callsen, Stefan Kalinowski, Ian M. Rousseau, Roy Barzel, Jean-François Carlin, Frank Jahnke, Raphaël Butté, Christopher Gies, Axel Hoffmann, Nicolas Grandjean and Stephan Reitzenstein ()
Additional contact information
Stefan T. Jagsch: Technische Universität Berlin
Noelia Vico Triviño: École Polytechnique Fédérale de Lausanne
Frederik Lohof: University of Bremen
Gordon Callsen: Technische Universität Berlin
Stefan Kalinowski: Technische Universität Berlin
Ian M. Rousseau: École Polytechnique Fédérale de Lausanne
Roy Barzel: University of Bremen
Jean-François Carlin: École Polytechnique Fédérale de Lausanne
Frank Jahnke: University of Bremen
Raphaël Butté: École Polytechnique Fédérale de Lausanne
Christopher Gies: University of Bremen
Axel Hoffmann: Technische Universität Berlin
Nicolas Grandjean: École Polytechnique Fédérale de Lausanne
Stephan Reitzenstein: Technische Universität Berlin

Nature Communications, 2018, vol. 9, issue 1, 1-7

Abstract: Abstract Exploring the limits of spontaneous emission coupling is not only one of the central goals in the development of nanolasers, it is also highly relevant regarding future large-scale photonic integration requiring energy-efficient coherent light sources with a small footprint. Recent studies in this field have triggered a vivid debate on how to prove and interpret lasing in the high-β regime. We investigate close-to-ideal spontaneous emission coupling in GaN nanobeam lasers grown on silicon. Such nanobeam cavities allow for efficient funneling of spontaneous emission from the quantum well gain material into the laser mode. By performing a comprehensive optical and quantum-optical characterization, supported by microscopic modeling of the nanolasers, we identify high-β lasing at room temperature and show a lasing transition in the absence of a threshold nonlinearity at 156 K. This peculiar characteristic is explained in terms of a temperature and excitation power-dependent interplay between zero-dimensional and two-dimensional gain contributions.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41467-018-02999-2 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-02999-2

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-018-02999-2

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-02999-2