EconPapers    
Economics at your fingertips  
 

Near-100 MeV protons via a laser-driven transparency-enhanced hybrid acceleration scheme

A. Higginson, R. J. Gray, M. King, R. J. Dance, S. D. R. Williamson, N. M. H. Butler, R. Wilson, R. Capdessus, C. Armstrong, J. S. Green, S. J. Hawkes, P. Martin, W. Q. Wei, S. R. Mirfayzi, X. H. Yuan, S. Kar, M. Borghesi, R. J. Clarke, D. Neely and P. McKenna ()
Additional contact information
A. Higginson: University of Strathclyde
R. J. Gray: University of Strathclyde
M. King: University of Strathclyde
R. J. Dance: University of Strathclyde
S. D. R. Williamson: University of Strathclyde
N. M. H. Butler: University of Strathclyde
R. Wilson: University of Strathclyde
R. Capdessus: University of Strathclyde
C. Armstrong: University of Strathclyde
J. S. Green: STFC Rutherford Appleton Laboratory
S. J. Hawkes: University of Strathclyde
P. Martin: Queen’s University Belfast
W. Q. Wei: Shanghai Jiao Tong University
S. R. Mirfayzi: Queen’s University Belfast
X. H. Yuan: Shanghai Jiao Tong University
S. Kar: STFC Rutherford Appleton Laboratory
M. Borghesi: Queen’s University Belfast
R. J. Clarke: STFC Rutherford Appleton Laboratory
D. Neely: University of Strathclyde
P. McKenna: University of Strathclyde

Nature Communications, 2018, vol. 9, issue 1, 1-9

Abstract: Abstract The range of potential applications of compact laser-plasma ion sources motivates the development of new acceleration schemes to increase achievable ion energies and conversion efficiencies. Whilst the evolving nature of laser-plasma interactions can limit the effectiveness of individual acceleration mechanisms, it can also enable the development of hybrid schemes, allowing additional degrees of control on the properties of the resulting ion beam. Here we report on an experimental demonstration of efficient proton acceleration to energies exceeding 94 MeV via a hybrid scheme of radiation pressure-sheath acceleration in an ultrathin foil irradiated by a linearly polarised laser pulse. This occurs via a double-peaked electrostatic field structure, which, at an optimum foil thickness, is significantly enhanced by relativistic transparency and an associated jet of super-thermal electrons. The range of parameters over which this hybrid scenario occurs is discussed and implications for ion acceleration driven by next-generation, multi-petawatt laser facilities are explored.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.nature.com/articles/s41467-018-03063-9 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-03063-9

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-018-03063-9

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-03063-9