Reshaping the phonon energy landscape of nanocrystals inside a terahertz plasmonic nanocavity
Xin Jin,
Andrea Cerea,
Gabriele C. Messina,
Andrea Rovere,
Riccardo Piccoli,
Francesco Donato,
Francisco Palazon,
Andrea Perucchi,
Paola Pietro,
Roberto Morandotti,
Stefano Lupi,
Francesco Angelis,
Mirko Prato,
Andrea Toma () and
Luca Razzari ()
Additional contact information
Xin Jin: Matériaux et Télécommunications
Andrea Cerea: Istituto Italiano di Tecnologia
Gabriele C. Messina: Istituto Italiano di Tecnologia
Andrea Rovere: Matériaux et Télécommunications
Riccardo Piccoli: Matériaux et Télécommunications
Francesco Donato: Istituto Italiano di Tecnologia
Francisco Palazon: Istituto Italiano di Tecnologia
Andrea Perucchi: Elettra - Sincrotrone Trieste S.C.p.A
Paola Pietro: Elettra - Sincrotrone Trieste S.C.p.A
Roberto Morandotti: Matériaux et Télécommunications
Stefano Lupi: Università di Roma “La Sapienza”
Francesco Angelis: Istituto Italiano di Tecnologia
Mirko Prato: Istituto Italiano di Tecnologia
Andrea Toma: Istituto Italiano di Tecnologia
Luca Razzari: Matériaux et Télécommunications
Nature Communications, 2018, vol. 9, issue 1, 1-6
Abstract:
Abstract Phonons (quanta of collective vibrations) are a major source of energy dissipation and drive some of the most relevant properties of materials. In nanotechnology, phonons severely affect light emission and charge transport of nanodevices. While the phonon response is conventionally considered an inherent property of a nanomaterial, here we show that the dipole-active phonon resonance of semiconducting (CdS) nanocrystals can be drastically reshaped inside a terahertz plasmonic nanocavity, via the phonon strong coupling with the cavity vacuum electric field. Such quantum zero-point field can indeed reach extreme values in a plasmonic nanocavity, thanks to a mode volume well below λ3/107. Through Raman measurements, we find that the nanocrystals within a nanocavity exhibit two new “hybridized” phonon peaks, whose spectral separation increases with the number of nanocrystals. Our findings open exciting perspectives for engineering the optical phonon response of functional nanomaterials and for implementing a novel platform for nanoscale quantum optomechanics.
Date: 2018
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-018-03120-3 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-03120-3
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-018-03120-3
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().