EconPapers    
Economics at your fingertips  
 

Functional architecture of reward learning in mushroom body extrinsic neurons of larval Drosophila

Timo Saumweber, Astrid Rohwedder, Michael Schleyer, Katharina Eichler, Yi-chun Chen, Yoshinori Aso, Albert Cardona, Claire Eschbach, Oliver Kobler, Anne Voigt, Archana Durairaja, Nino Mancini, Marta Zlatic, James W. Truman, Andreas S. Thum () and Bertram Gerber ()
Additional contact information
Timo Saumweber: Leibniz Institute for Neurobiology (LIN)
Astrid Rohwedder: University of Konstanz
Michael Schleyer: Leibniz Institute for Neurobiology (LIN)
Katharina Eichler: University of Konstanz
Yi-chun Chen: Leibniz Institute for Neurobiology (LIN)
Yoshinori Aso: HHMI Janelia Research Campus
Albert Cardona: HHMI Janelia Research Campus
Claire Eschbach: HHMI Janelia Research Campus
Oliver Kobler: Leibniz Institute for Neurobiology (LIN)
Anne Voigt: Leibniz Institute for Neurobiology (LIN)
Archana Durairaja: Leibniz Institute for Neurobiology (LIN)
Nino Mancini: Leibniz Institute for Neurobiology (LIN)
Marta Zlatic: HHMI Janelia Research Campus
James W. Truman: HHMI Janelia Research Campus
Andreas S. Thum: University of Konstanz
Bertram Gerber: Leibniz Institute for Neurobiology (LIN)

Nature Communications, 2018, vol. 9, issue 1, 1-19

Abstract: Abstract The brain adaptively integrates present sensory input, past experience, and options for future action. The insect mushroom body exemplifies how a central brain structure brings about such integration. Here we use a combination of systematic single-cell labeling, connectomics, transgenic silencing, and activation experiments to study the mushroom body at single-cell resolution, focusing on the behavioral architecture of its input and output neurons (MBINs and MBONs), and of the mushroom body intrinsic APL neuron. Our results reveal the identity and morphology of almost all of these 44 neurons in stage 3 Drosophila larvae. Upon an initial screen, functional analyses focusing on the mushroom body medial lobe uncover sparse and specific functions of its dopaminergic MBINs, its MBONs, and of the GABAergic APL neuron across three behavioral tasks, namely odor preference, taste preference, and associative learning between odor and taste. Our results thus provide a cellular-resolution study case of how brains organize behavior.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41467-018-03130-1 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-03130-1

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-018-03130-1

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-03130-1