EconPapers    
Economics at your fingertips  
 

Kinetics of lithium peroxide oxidation by redox mediators and consequences for the lithium–oxygen cell

Yuhui Chen, Xiangwen Gao, Lee R. Johnson and Peter G. Bruce ()
Additional contact information
Yuhui Chen: University of Oxford
Xiangwen Gao: University of Oxford
Lee R. Johnson: University of Nottingham, Jubilee Campus
Peter G. Bruce: University of Oxford

Nature Communications, 2018, vol. 9, issue 1, 1-6

Abstract: Abstract Lithium–oxygen cells, in which lithium peroxide forms in solution rather than on the electrode surface, can sustain relatively high cycling rates but require redox mediators to charge. The mediators are oxidised at the electrode surface and then oxidise lithium peroxide stored in the cathode. The kinetics of lithium peroxide oxidation has received almost no attention and yet is crucial for the operation of the lithium–oxygen cell. It is essential that the molecules oxidise lithium peroxide sufficiently rapidly to sustain fast charging. Here, we investigate the kinetics of lithium peroxide oxidation by several different classes of redox mediators. We show that the reaction is not a simple outer-sphere electron transfer and that the steric structure of the mediator molecule plays an important role. The fastest mediator studied could sustain a charging current of up to 1.9 A cm–2, based on a model for a porous electrode described here.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41467-018-03204-0 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-03204-0

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-018-03204-0

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-03204-0