EconPapers    
Economics at your fingertips  
 

Direct observation of orbital hybridisation in a cuprate superconductor

C. E. Matt (), D. Sutter, A. M. Cook, Y. Sassa, M. Månsson, O. Tjernberg, L. Das, M. Horio, D. Destraz, C. G. Fatuzzo, K. Hauser, M. Shi, M. Kobayashi, V. N. Strocov, T. Schmitt, P. Dudin, M. Hoesch, S. Pyon, T. Takayama, H. Takagi, O. J. Lipscombe, S. M. Hayden, T. Kurosawa, N. Momono, M. Oda, T. Neupert and J. Chang ()
Additional contact information
C. E. Matt: Universität Zürich
D. Sutter: Universität Zürich
A. M. Cook: Universität Zürich
Y. Sassa: Uppsala University
M. Månsson: KTH Royal Institute of Technology
O. Tjernberg: KTH Royal Institute of Technology
L. Das: Universität Zürich
M. Horio: Universität Zürich
D. Destraz: Universität Zürich
C. G. Fatuzzo: École Polytechnique Fedérale de Lausanne (EPFL)
K. Hauser: Universität Zürich
M. Shi: Paul Scherrer Institut
M. Kobayashi: Paul Scherrer Institut
V. N. Strocov: Paul Scherrer Institut
T. Schmitt: Paul Scherrer Institut
P. Dudin: Diamond Light Source, Harwell Campus
M. Hoesch: Diamond Light Source, Harwell Campus
S. Pyon: University of Tokyo
T. Takayama: University of Tokyo
H. Takagi: University of Tokyo
O. J. Lipscombe: University of Bristol
S. M. Hayden: University of Bristol
T. Kurosawa: Hokkaido University
N. Momono: Hokkaido University
M. Oda: Hokkaido University
T. Neupert: Universität Zürich
J. Chang: Universität Zürich

Nature Communications, 2018, vol. 9, issue 1, 1-7

Abstract: Abstract The minimal ingredients to explain the essential physics of layered copper-oxide (cuprates) materials remains heavily debated. Effective low-energy single-band models of the copper–oxygen orbitals are widely used because there exists no strong experimental evidence supporting multi-band structures. Here, we report angle-resolved photoelectron spectroscopy experiments on La-based cuprates that provide direct observation of a two-band structure. This electronic structure, qualitatively consistent with density functional theory, is parametrised by a two-orbital ( $$d_{x^2 - y^2}$$ d x 2 - y 2 and $$d_{z^2}$$ d z 2 ) tight-binding model. We quantify the orbital hybridisation which provides an explanation for the Fermi surface topology and the proximity of the van-Hove singularity to the Fermi level. Our analysis leads to a unification of electronic hopping parameters for single-layer cuprates and we conclude that hybridisation, restraining d-wave pairing, is an important optimisation element for superconductivity.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41467-018-03266-0 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-03266-0

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-018-03266-0

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-03266-0