EconPapers    
Economics at your fingertips  
 

Bonding dissimilar polymer networks in various manufacturing processes

Qihan Liu, Guodong Nian, Canhui Yang, Shaoxing Qu and Zhigang Suo ()
Additional contact information
Qihan Liu: Harvard University
Guodong Nian: Harvard University
Canhui Yang: Harvard University
Shaoxing Qu: Zhejiang University
Zhigang Suo: Harvard University

Nature Communications, 2018, vol. 9, issue 1, 1-11

Abstract: Abstract Recently developed devices mimic neuromuscular and neurosensory systems by integrating hydrogels and hydrophobic elastomers. While different methods are developed to bond hydrogels with hydrophobic elastomers, it remains a challenge to coat and print various hydrogels and elastomers of arbitrary shapes, in arbitrary sequences, with strong adhesion. Here we report an approach to meet this challenge. We mix silane coupling agents into the precursors of the networks, and tune the kinetics such that, when the networks form, the coupling agents incorporate into the polymer chains, but do not condensate. After a manufacturing step, the coupling agents condensate, add crosslinks inside the networks, and form bonds between the networks. This approach enables independent bonding and manufacturing. We formulate oxygen-tolerant hydrogel resins for spinning, printing, and coating in the open air. We find that thin elastomer coatings enable hydrogels to sustain high temperatures without boiling.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41467-018-03269-x Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-03269-x

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-018-03269-x

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-03269-x