EconPapers    
Economics at your fingertips  
 

How high energy fluxes may affect Rayleigh–Taylor instability growth in young supernova remnants

C. C. Kuranz (), H.-S. Park, C. M. Huntington, A. R. Miles, B. A. Remington, T. Plewa, M. R. Trantham, H. F. Robey, D. Shvarts, A. Shimony, K. Raman, S. MacLaren, W. C. Wan, F. W. Doss, J. Kline, K. A. Flippo, G. Malamud, T. A. Handy, S. Prisbrey, C. M. Krauland, S. R. Klein, E. C. Harding, R. Wallace, M. J. Grosskopf, D. C. Marion, D. Kalantar, E. Giraldez and R. P. Drake
Additional contact information
C. C. Kuranz: University of Michigan
H.-S. Park: Lawrence Livermore National Laboratory
C. M. Huntington: Lawrence Livermore National Laboratory
A. R. Miles: Lawrence Livermore National Laboratory
B. A. Remington: Lawrence Livermore National Laboratory
T. Plewa: Florida State University
M. R. Trantham: University of Michigan
H. F. Robey: Lawrence Livermore National Laboratory
D. Shvarts: Ben Gurion University of the Negev
A. Shimony: Ben Gurion University of the Negev
K. Raman: Lawrence Livermore National Laboratory
S. MacLaren: Lawrence Livermore National Laboratory
W. C. Wan: University of Michigan
F. W. Doss: Los Alamos National Laboratory
J. Kline: Los Alamos National Laboratory
K. A. Flippo: Los Alamos National Laboratory
G. Malamud: University of Michigan
T. A. Handy: University of Michigan
S. Prisbrey: Lawrence Livermore National Laboratory
C. M. Krauland: General Atomics
S. R. Klein: University of Michigan
E. C. Harding: Sandia National Laboratory
R. Wallace: Lawrence Livermore National Laboratory
M. J. Grosskopf: Simon Fraser University
D. C. Marion: University of Michigan
D. Kalantar: Lawrence Livermore National Laboratory
E. Giraldez: General Atomics
R. P. Drake: University of Michigan

Nature Communications, 2018, vol. 9, issue 1, 1-6

Abstract: Abstract Energy-transport effects can alter the structure that develops as a supernova evolves into a supernova remnant. The Rayleigh–Taylor instability is thought to produce structure at the interface between the stellar ejecta and the circumstellar matter, based on simple models and hydrodynamic simulations. Here we report experimental results from the National Ignition Facility to explore how large energy fluxes, which are present in supernovae, affect this structure. We observed a reduction in Rayleigh–Taylor growth. In analyzing the comparison with supernova SN1993J, a Type II supernova, we found that the energy fluxes produced by heat conduction appear to be larger than the radiative energy fluxes, and large enough to have dramatic consequences. No reported astrophysical simulations have included radiation and heat conduction self-consistently in modeling supernova remnants and these dynamics should be noted in the understanding of young supernova remnants.

Date: 2018
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-018-03548-7 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-03548-7

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-018-03548-7

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-03548-7