EconPapers    
Economics at your fingertips  
 

Chemical tunnel-splitting-engineering in a dysprosium-based molecular nanomagnet

Mikkel A. Sørensen (), Ursula B. Hansen, Mauro Perfetti, Kasper S. Pedersen, Elena Bartolomé, Giovanna G. Simeoni, Hannu Mutka, Stéphane Rols, Minki Jeong, Ivica Zivkovic, Maria Retuerto, Ana Arauzo, Juan Bartolomé, Stergios Piligkos, Høgni Weihe, Linda H. Doerrer, Joris Slageren, Henrik M. Rønnow, Kim Lefmann and Jesper Bendix ()
Additional contact information
Mikkel A. Sørensen: University of Copenhagen
Ursula B. Hansen: University of Copenhagen
Mauro Perfetti: Universität Stuttgart
Kasper S. Pedersen: University of Copenhagen
Elena Bartolomé: Escola Universitària Salesiana de Sarrià (EUSS)
Giovanna G. Simeoni: Technische Universität München
Hannu Mutka: Institute Laue–Langevin
Stéphane Rols: Institute Laue–Langevin
Minki Jeong: École Polytechnique Fédérale Lausanne
Ivica Zivkovic: École Polytechnique Fédérale Lausanne
Maria Retuerto: University of Copenhagen
Ana Arauzo: CSIC-Instituto de Cìencia de Materiales de Aragón (ICMA)
Juan Bartolomé: CSIC-Instituto de Cìencia de Materiales de Aragón (ICMA)
Stergios Piligkos: University of Copenhagen
Høgni Weihe: University of Copenhagen
Linda H. Doerrer: Boston University
Joris Slageren: Universität Stuttgart
Henrik M. Rønnow: École Polytechnique Fédérale Lausanne
Kim Lefmann: University of Copenhagen
Jesper Bendix: University of Copenhagen

Nature Communications, 2018, vol. 9, issue 1, 1-9

Abstract: Abstract Total control over the electronic spin relaxation in molecular nanomagnets is the ultimate goal in the design of new molecules with evermore realizable applications in spin-based devices. For single-ion lanthanide systems, with strong spin–orbit coupling, the potential applications are linked to the energetic structure of the crystal field levels and quantum tunneling within the ground state. Structural engineering of the timescale of these tunneling events via appropriate design of crystal fields represents a fundamental challenge for the synthetic chemist, since tunnel splittings are expected to be suppressed by crystal field environments with sufficiently high-order symmetry. Here, we report the long missing study of the effect of a non-linear (C4) to pseudo-linear (D4d) change in crystal field symmetry in an otherwise chemically unaltered dysprosium complex. From a purely experimental study of crystal field levels and electronic spin dynamics at milliKelvin temperatures, we demonstrate the ensuing threefold reduction of the tunnel splitting.

Date: 2018
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-018-03706-x Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-03706-x

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-018-03706-x

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-03706-x