Heterogeneous Fe3 single-cluster catalyst for ammonia synthesis via an associative mechanism
Jin-Cheng Liu,
Xue-Lu Ma,
Yong Li,
Yang-Gang Wang,
Hai Xiao and
Jun Li ()
Additional contact information
Jin-Cheng Liu: Tsinghua University
Xue-Lu Ma: Tsinghua University
Yong Li: Tsinghua University
Yang-Gang Wang: Tsinghua University
Hai Xiao: Tsinghua University
Jun Li: Tsinghua University
Nature Communications, 2018, vol. 9, issue 1, 1-9
Abstract:
Abstract The current industrial ammonia synthesis relies on Haber–Bosch process that is initiated by the dissociative mechanism, in which the adsorbed N2 dissociates directly, and thus is limited by Brønsted–Evans–Polanyi (BEP) relation. Here we propose a new strategy that an anchored Fe3 cluster on the θ-Al2O3(010) surface as a heterogeneous catalyst for ammonia synthesis from first-principles theoretical study and microkinetic analysis. We have studied the whole catalytic mechanism for conversion of N2 to NH3 on Fe3/θ-Al2O3(010), and find that an associative mechanism, in which the adsorbed N2 is first hydrogenated to NNH, dominates over the dissociative mechanism, which we attribute to the large spin polarization, low oxidation state of iron, and multi-step redox capability of Fe3 cluster. The associative mechanism liberates the turnover frequency (TOF) for ammonia production from the limitation due to the BEP relation, and the calculated TOF on Fe3/θ-Al2O3(010) is comparable to Ru B5 site.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://www.nature.com/articles/s41467-018-03795-8 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-03795-8
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-018-03795-8
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().