EconPapers    
Economics at your fingertips  
 

Systematic mapping of contact sites reveals tethers and a function for the peroxisome-mitochondria contact

Nadav Shai, Eden Yifrach, Carlo W. T. Roermund, Nir Cohen, Chen Bibi, Lodewijk IJlst, Laetitia Cavellini, Julie Meurisse, Ramona Schuster, Lior Zada, Muriel C. Mari, Fulvio M. Reggiori, Adam L. Hughes, Mafalda Escobar-Henriques, Mickael M. Cohen, Hans R. Waterham, Ronald J. A. Wanders, Maya Schuldiner () and Einat Zalckvar ()
Additional contact information
Nadav Shai: Weizmann Institute of Science
Eden Yifrach: Weizmann Institute of Science
Carlo W. T. Roermund: University of Amsterdam
Nir Cohen: Weizmann Institute of Science
Chen Bibi: Weizmann Institute of Science
Lodewijk IJlst: University of Amsterdam
Laetitia Cavellini: Institut de Biologie Physico-Chimique, Sorbonne Universités
Julie Meurisse: Institut de Biologie Physico-Chimique, Sorbonne Universités
Ramona Schuster: University of Cologne
Lior Zada: Weizmann Institute of Science
Muriel C. Mari: University of Groningen, University Medical Center Groningen
Fulvio M. Reggiori: University of Groningen, University Medical Center Groningen
Adam L. Hughes: University of Utah School of Medicine
Mafalda Escobar-Henriques: University of Cologne
Mickael M. Cohen: Institut de Biologie Physico-Chimique, Sorbonne Universités
Hans R. Waterham: University of Amsterdam
Ronald J. A. Wanders: University of Amsterdam
Maya Schuldiner: Weizmann Institute of Science
Einat Zalckvar: Weizmann Institute of Science

Nature Communications, 2018, vol. 9, issue 1, 1-13

Abstract: Abstract The understanding that organelles are not floating in the cytosol, but rather held in an organized yet dynamic interplay through membrane contact sites, is altering the way we grasp cell biological phenomena. However, we still have not identified the entire repertoire of contact sites, their tethering molecules and functions. To systematically characterize contact sites and their tethering molecules here we employ a proximity detection method based on split fluorophores and discover four potential new yeast contact sites. We then focus on a little-studied yet highly disease-relevant contact, the Peroxisome-Mitochondria (PerMit) proximity, and uncover and characterize two tether proteins: Fzo1 and Pex34. We genetically expand the PerMit contact site and demonstrate a physiological function in β-oxidation of fatty acids. Our work showcases how systematic analysis of contact site machinery and functions can deepen our understanding of these structures in health and disease.

Date: 2018
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-018-03957-8 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-03957-8

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-018-03957-8

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-03957-8